Newton's Method

Created by
Barbara Forrest and Brian Forrest

Newton's Method

Problem Revisited: Given a function $f(x)$ solve the equation

$$
f(x)=0 . \quad(*)
$$

Recall: If $f(x)$ is continuous on $[a, b]$ and if $f(a) \cdot f(b)<0$, then the Intermediate Value Theorem shows that there exists $c \in(a, b)$ with

$$
f(c)=0 .
$$

Moreover, the Bisection Method provides us with an algorithm to approximate c as closely as we choose.

Question:

Do better algorithms exist for finding approximate solutions to (*)?

Newton's Method

Motivating Example: Assume that the graph of $f(x)$ is a line through the point $(a, f(a))$ with slope $m \neq 0$. Find the point c where

$$
f(c)=0
$$

Note that $f(x)=f(a)+m(x-a)$. Therefore,

$$
0=f(c)=f(a)+m(c-a) \Rightarrow-f(a)=m(c-a)
$$

Finally,

$$
c=a-\frac{f(a)}{m}=a-\frac{f(a)}{f^{\prime}(a)}
$$

Newton's Method

Question: What can we do if the graph of $f(x)$ is not a line?
Key Idea: Suppose that $x=a$ is close to the solution \boldsymbol{c} where

$$
f(c)=0
$$

If $f(x)$ is differentiable at $x=a$ with $f^{\prime}(a) \neq 0$, then $L_{a}(x)=f(a)+f^{\prime}(a)(x-a)$ and since

$$
f(x) \cong L_{a}(x)
$$

the graphs of $f(x)$ and $L_{a}(\boldsymbol{x})$ should cross the \boldsymbol{x}-axis at approximately the same location.

Newton's Method

Step 1: Pick an x_{1} as close as possible to the point c with $f(c)=0$. Step 2: If $f^{\prime}\left(x_{1}\right) \neq \mathbf{0}$, we can approximate c by x_{2}, where x_{2} is such that

$$
L_{x_{1}}\left(x_{2}\right)=0
$$

Then

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

Newton's Method

Step 3: Repeat Step 2 to get

$$
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)} .
$$

This gives a recursive sequence

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Newton's Method

Convergence of Newton's Method

1) For most nice functions and reasonable choices of x_{1}, the sequence $\left\{x_{n}\right\}$ converges very rapidly to a number c with $f(c)=0$.
2) Typically the number of decimal places of accuracy in Newton's Method doubles with each iteration (quadratic convergence). The Bisection Method takes roughly 4 iterations to improve accuracy by one decimal place.
3) To achieve n-decimal places of accuracy, terminate the procedure when two consecutive iterations agree to n-decimal places.
4) Unlike the Bisection Method, Newton's Method can fail to coverge.

Heron's Algorithm Revisited

Problem: Use Newton's method to approximate $\sqrt{2}$ to nine decimal places.
Solution: We must solve

$$
f(x)=x^{2}-2=0
$$

Step 1: Since we are looking for positive root we let

$$
x_{1}=1
$$

Step 2: Determine the recursive sequence:

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& =x_{n}-\frac{\left(x_{n}^{2}-2\right)}{2 x_{n}} \\
& =\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right)
\end{aligned}
$$

Note: This is the same recursive sequence that we had in Heron's Algorithm for finding $\sqrt{2}$.

Heron's Algorithm Revisited

Using $x_{1}=1$, we have

$$
\begin{aligned}
x_{2} & =x_{1+1} \\
& =\frac{1}{2}\left(1+\frac{2}{1}\right) \\
& =\frac{1}{2}(3) \\
& =1.5
\end{aligned}
$$

Next we have

$$
\begin{aligned}
x_{3} & =x_{2+1} \\
& =\frac{1}{2}\left(\frac{3}{2}+\frac{2}{\frac{3}{2}}\right) \\
& =\frac{17}{12} \\
& =1.416666667
\end{aligned}
$$

Heron's Algorithm Revisited

Continuing the calculations we get:

$$
\begin{aligned}
x_{4} & =x_{3+1} \\
& =\frac{1}{2}\left(\frac{17}{12}+\frac{2}{\frac{17}{12}}\right) \\
& =\frac{577}{408} \\
& =1.414215686 \\
x_{5} & =x_{4+1} \\
& =\frac{1}{2}\left(\frac{577}{408}+\frac{2}{\frac{577}{408}}\right) \\
& =\frac{665857}{470832} \\
& =1.414213562 \\
x_{6} & =x_{5+1} \\
& =\frac{1}{2}\left(\frac{665857}{470832}+\frac{2}{\frac{665857}{470832}}\right) \\
& =1.414213562 \cong \sqrt{2}
\end{aligned}
$$

Failure of Newton's Method

Example: Let

$$
f(x)=\arctan (x)
$$

and $\left|x_{1}\right|>1.4$.

Failure of Newton's Method

Example: Let

$$
f(x)=\arctan (x)
$$

and $\left|x_{1}\right|>1.4$.

Failure of Newton's Method

Example: Let

$$
f(x)=\arctan (x)
$$

and $\left|x_{1}\right|>1.4$.

Failure of Newton's Method

Example: Let

$$
f(x)=\arctan (x)
$$

and $\left|x_{1}\right|>1.4$.

