More Trigonometric Derivatives

Created by

Barbara Forrest and Brian Forrest

Derivative of $\sin (x)$

Theorem: [The Derivative of $\sin (x)$]
Assume that $f(x)=\sin (x)$. Then

$$
f^{\prime}(x)=\cos (x)
$$

for all $x \in \mathbb{R}$.

Question: Can we use the properties of derivatives to find the derivative of other trigonometric functions?

Derivative of $\cos (x)$

Example: Find $\frac{d}{d x}(\cos (x))$.
Solution: We know that

$$
\cos (x)=\sin \left(x+\frac{\pi}{2}\right)
$$

Let $\boldsymbol{y}=\sin (u)$ and $u=x+\frac{\pi}{2}$. Substituting for u gives us that

$$
y=y(x)=\sin \left(x+\frac{\pi}{2}\right)=\cos (x)
$$

Therefore,

$$
\begin{aligned}
\frac{d}{d x}(\cos (x)) & =\frac{d y}{d x} \\
& =\frac{d y}{d u} \frac{d u}{d x} \\
& =\cos (u) \cdot(1) \\
& =\cos \left(x+\frac{\pi}{2}\right) \\
& =\cos (x) \cos \left(\frac{\pi}{2}\right)-\sin (x) \sin \left(\frac{\pi}{2}\right) \\
& =-\sin (x)
\end{aligned}
$$

Derivative of $\tan (x)$

Example: Find $\frac{d}{d x}(\tan (x))$.
Solution: Since

$$
\tan (x)=\frac{\sin (x)}{\cos (x)}
$$

we get

$$
\begin{aligned}
\frac{d}{d x}(\tan (x)) & =\frac{d}{d x}\left(\frac{\sin (x)}{\cos (x)}\right) \\
& =\frac{\left(\frac{d}{d x} \sin (x)\right) \cos (x)-(\sin (x))\left(\frac{d}{d x} \cos (x)\right)}{\cos ^{2}(x)} \\
& =\frac{\cos (x) \cos (x)-(\sin (x))(-\sin (x))}{\cos ^{2}(x)} \\
& =\frac{\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)} \\
& =\frac{1}{\cos ^{2}(x)} \\
& =\sec ^{2}(x) .
\end{aligned}
$$

Derivative of $\cot (x)$

Note: We have just seen that

$$
\frac{d}{d x}(\tan (x))=\sec ^{2}(x)
$$

whenever $\cos (x) \neq 0$. A similar calculation shows that

$$
\frac{d}{d x}(\cot (x))=-\csc ^{2}(x)
$$

whenever $\sin (x) \neq 0$.

Derivative of $\sec (x)$ and $\csc (x)$

Example: Find $\frac{d}{d x}(\sec (x))$.
Solution: Since $\sec (x)=\frac{1}{\cos (x)}$, we get

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{\cos (x)}\right) & =-\frac{\frac{d}{d x}(\cos (x))}{\cos ^{2}(x)} \\
& =\frac{-(-\sin (x))}{\cos ^{2}(x)} \\
& =\frac{\sin (x)}{\cos (x)} \cdot \frac{1}{\cos (x)} \\
& =\tan (x) \sec (x)
\end{aligned}
$$

A similar calculation shows that

$$
\frac{d}{d x}(\csc (x))=-\cot (x) \csc (x)
$$

