Local Extrema

Created by
Barbara Forrest and Brian Forrest

Global Extrema

Definition: [Global Extrema]

Suppose that $f(x)$ is defined on some set S.

1) We say that $f(x)$ has a global maxima on S at $x=c$ if

$$
f(x) \leq f(c)
$$

for every $x \in S$.
2) We say that $f(x)$ has a global minimum on S at $x=c$ if

$$
f(c) \leq f(x)
$$

for every $x \in S$.

Global Extrema

Recall: The Extreme Value Theorem tells us that if $f(x)$ is continuous on $[a, b]$, then there exists $c, d \in[a, b]$ such that

$$
f(c) \leq f(x) \leq f(d)
$$

for all $x \in[a, b]$, and each of c and d is either

1) an endpoint, or
2) is in the open interval (a, b).

Local Extrema

Definition: [Local Extrema]

1) We say that $f(x)$ has a local maximum at $x=c$ if there exists an open interval (a, b) containing c such that

$$
f(x) \leq f(c)
$$

for every $x \in(a, b)$.
2) We say that $f(x)$ has a local minimum at $x=c$ if there exists an open interval (a, b) containing c such that

$$
f(c) \leq f(x)
$$

for every $x \in(a, b)$.

Local and Global Extrema

$g(x)$ is defined on $[a, f]$.

Local Extrema

Problem:

If f has either a local maximum or local minimum at $x=c$ and f is differentiable at $x=c$, what can we say about $f^{\prime}(c)$?

Local Extrema

Solution: Assume that $f(x)$ has a local maximum at $x=c$ and that $c \in(a, b)$ with $f(x) \leq f(c)$ for all $x \in(a, b)$. Assume that $f^{\prime}(c)$ exists.

1. If $a<c+h<c$, then

$$
\frac{f(c+h)-f(c)}{h} \geq 0 \Rightarrow f^{\prime}(c)=\lim _{h \rightarrow 0^{-}} \frac{f(c+h)-f(c)}{h} \geq 0
$$

2. If $c<c+h<b$, then

$$
\frac{f(c+h)-f(c)}{h} \leq 0 \Rightarrow f^{\prime}(c)=\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h} \leq 0
$$

Hence $f^{\prime}(c)=0$.

Local Extrema

Theorem: [Local Extrema Theorem]

Assume that $f(x)$ has either a local maximum or a local minimum at $x=c$. If $f(x)$ is differentiable at $x=c$, then

$$
f^{\prime}(c)=0 .
$$

Question:

If $f^{\prime}(c)=0$ must $x=c$ be either a local maximum or local minimum?

Local Extrema

Example: Let $f(x)=x^{3}$. Then $f^{\prime}(x)=3 x^{2}$ so that

$$
f^{\prime}(0)=0 .
$$

But $f(x)$ has neither a local maximum nor a local minimum at $x=c$ since $f(x)$ is always increasing.

Local Extrema

Question: If $f(x)$ has a local maximum or minimum at $x=c$, must $f^{\prime}(c)=0$?

Example: Let $f(x)=|x|$. Then $f(x)$ has a local (and global) minimum at $x=0$, but $f^{\prime}(0)$ does not exist.

Critical Point

Definition: [Critical Point]

A point c in the domain of a function $f(x)$ is called a critical point for $f(x)$ if either

$$
f^{\prime}(c)=0
$$

or
$f^{\prime}(c)$ does not exist.

Global Extrema and the EVT

Theorem: [Extreme Value Theorem (EVT)]
Assume that $f(x)$ is continuous on $[a, b]$. Then there exists $c, d \in[a, b]$ such that

$$
f(c) \leq f(x) \leq f(d)
$$

for every $x \in[a, b]$.
Question: How can we find c and d ?

Global Extrema and the EVT

Two Cases:

Global Extrema and the EVT

Two Cases:

1) d is an endpoint.

Global Extrema and the EVT

Two Cases:

1) d is an endpoint.
2) $d \in(a, b) \Rightarrow d$ is a local max $\Rightarrow d$ is a critical point.

Similarly for \boldsymbol{c}.

Finding Local Extrema

Question:

How do we know if a critical point $x=c$ is actually a local maximum or a local minimum?

Finding Local Extrema

Question:

How do we know if a critical point $x=c$ is actually a local maximum or a local minimum?

