Linear Approximation: Basics

Created by

Barbara Forrest and Brian Forrest

Tangent Line

Question: Does there exist a geometric interpretation of the derivative?

Definition: [Tangent Line]

The tangent line to the graph of $f(x)$ at $x=a$ is the line passing through $(a, f(a))$ with slope equal to $f^{\prime}(a)$. That is

$$
y=f(a)+f^{\prime}(a)(x-a)
$$

Linear Approximation

Fundamental Observation:

Suppose that $f(x)$ is differentiable at $x=a$ with derivative $f^{\prime}(a)$. Then

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a) .
$$

Hence for values of x that are close to a we have

$$
\begin{equation*}
\frac{f(x)-f(a)}{x-a} \cong f^{\prime}(a) \tag{*}
\end{equation*}
$$

Rearranging (*), we get

$$
f(x)-f(a) \cong f^{\prime}(a)(x-a)
$$

and finally that

$$
f(x) \cong f(a)+f^{\prime}(a)(x-a) . \quad(* *)
$$

Linear Approximation

Definition: [Linear Approximation]

Let $y=f(x)$ be differentiable at $x=a$. The linear approximation to $f(x)$ at $\boldsymbol{x}=\boldsymbol{a}$ is the function

$$
L_{a}^{f}(x)=f(a)+f^{\prime}(a)(x-a)
$$

$L_{a}^{f}(x)$ is also called the linearization of $f(x)$ or the tangent line approximation to $f(x)$ at $x=a$.

Note: If $f(x)$ is clear from the context, then we will simply write $L_{a}(x)$.

Linear Approximation

Summary: If

$$
L_{a}^{f}(x)=f(a)+f^{\prime}(a)(x-a)
$$

then if $x \cong a$,

$$
L_{a}^{f}(x) \cong f(x)
$$

Observation: The graph of $L_{a}^{f}(x)$ is the tangent line to the graph of $f(x)$ through $(a, f(a))$.

Fundamental Properties of $L_{a}^{f}(x)$

Three Fundamental Properties of $L_{a}^{f}(x)$:
Assume that $f(x)$ is differentiable at $x=a$ with

$$
L_{a}^{f}(x)=f(a)+f^{\prime}(a)(x-a)
$$

Then:

1) $L_{a}^{f}(a)=f(a)$.
2) $L_{a}^{f}(x)$ is differentiable at $x=a$ and $L_{a}^{f \prime}(a)=f^{\prime}(a)$.
3) $L_{a}^{f}(x)$ is the only first degree polynomial with Property (1) and Property (2).

Fundamental Trig Limit

Recall: The Fundamental Trig Limit

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

Observe: If $f(x)=\sin (x)$, then $f(0)=0$ and $f^{\prime}(0)=\cos (0)=1$ SO

$$
\sin (x) \cong L_{0}(x)=x
$$

when $\boldsymbol{x} \cong 0$.

Fundamental Trig Limit

Example: Use linear approximation to estimate $\sin (.01)$.
Solution: We have
$\sin (.01) \cong L_{0}(.01)=\left.x\right|_{.01}=.01$

Note: In fact

$$
\sin (.01)=.00999983
$$

to eight decimal places.
So the error is

$$
\begin{aligned}
\text { Error } & =\left|\sin (.01)-L_{0}(.01)\right| \\
& \cong .00000017 \\
& =1.7 \times 10^{-7}
\end{aligned}
$$

Example

Example: Let $f(x)=\tan (\sqrt{x})$ and $a=1$.
Key Observation:
Over very small intervals differentiable functions appear like lines.

