Linear Approximation: Applications

Created by

Barbara Forrest and Brian Forrest

Estimating Change

Problem: Assume that we know the value of a function $f(x)$ at a point a. How do we estimate the change we could expect in the value of $f(x)$ if we move to a point \boldsymbol{x}_{1} near \boldsymbol{a} ?

That is, we want to estimate the value of

$$
\Delta y=f\left(x_{1}\right)-f(a)
$$

if we change our variable by
units.

$$
\triangle x=x_{1}-a
$$

Estimating Change

Solution: If we were to use linear approximation, we get that

$$
\begin{aligned}
\Delta y & =f\left(x_{1}\right)-f(a) \\
& \cong L_{a}\left(x_{1}\right)-f(a) \\
& =\left(f(a)+f^{\prime}(a)\left(x_{1}-a\right)\right)-f(a) \\
& =f^{\prime}(a)\left(x_{1}-a\right) \\
& =f^{\prime}(a) \triangle x
\end{aligned}
$$

That is,

$$
\Delta y \cong f^{\prime}(a) \Delta x
$$

Estimating Change

Example: A metal sphere of radius 10 cm expands when heated so that its radius increases by 0.01 cm . Estimate the change in the volume of the sphere.
Solution: We know that the volume (\boldsymbol{V}) of the sphere with radius r is given by

$$
V=V(r)=\frac{4}{3} \pi r^{3}
$$

and that $V^{\prime}(r)=4 \pi r^{2}$.

Estimating Change

Solution (continued): Our focal point is at $r=10$, so

$$
V^{\prime}(10)=400 \pi
$$

We also know that $\Delta r=.01$, so

$$
\begin{aligned}
\Delta V & =V(10.01)-V(10) \\
& \cong V^{\prime}(10) \triangle r \\
& =400 \pi(.01) \\
& =4 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Qualitative Analysis of Functions

Problem: How does the function

Solution:

Step 1: Start with the simpler function

$$
h(u)=e^{u} .
$$

Since

$$
h(0)=h^{\prime}(0)=e^{0}=1
$$

we get that

$$
e^{u} \cong L_{0}^{h}(u)=1+u
$$

so long as u is near 0 .

Qualitative Analysis of Functions

Problem: How does the function

Qualitative Analysis of Functions

Problem: How does the function

$$
f(x)=e^{-x^{2}}
$$

behave near $\boldsymbol{x}=0$?
Solution (continued):
Step 2: We know that

$$
e^{u} \cong L_{0}^{h}(u)=1+u
$$

so long as \boldsymbol{u} is near 0 .
If x is close to 0 , then so is $u=-x^{2}$. Letting $u=-x^{2}$, we get

$$
y=e^{-x^{2}} \cong 1+\left(-x^{2}\right)=1-x^{2}
$$

if $x \cong 0$.

