Linear Approximation: The Error

Created by

Barbara Forrest and Brian Forrest

Linear Approximation

Definition: [Linear Approximation]
Let $y=f(x)$ be differentiable at $x=a$. The linear approximation to $f(x)$ at $x=a$ is the function

$$
L_{a}^{f}(x)=f(a)+f^{\prime}(a)(x-a) .
$$

$L_{a}^{f}(x)$ is also called the linearization of $f(x)$ or the tangent line approximation to $f(x)$ at $x=a$.

Linear Approximation

Key Observation: If

$$
L_{a}^{f}(x)=f(a)+f^{\prime}(a)(x-a)
$$

then if $x \cong a$,

$$
L_{a}^{f}(x) \cong f(x)
$$

Note: If $f(x)$ is clear from the context, then we will simply write $L_{a}(x)$.

The Error in Linear Approximation

Definition: [The Error in Linear Approximation]
Let $y=f(x)$ be differentiable at $x=a$. The error in using linear approximation to estimate $f(x)$ is given by

$$
\text { Error }=\left|f(x)-L_{a}(x)\right|
$$

Question: What are the key factors affecting the magnitude of the error?

The Error in Linear Approximation

First Observation: Since the approximation

$$
f(x) \cong f(a)+f^{\prime}(a)(x-a)=L_{a}(x)
$$

was obtained from the limit

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

the further we are from a, the larger the potential error.

The Error in Linear Approximation

Second Observation: Since we are using a line to approximate the graph of the function, the more curved the graph is near $x=a$, the greater the potential error.

Problem:

How can we quantify the phrase "the more curved the graph is?"

Curvature and the Second Derivative

Problem: To quantify the phrase "the more curved the graph is."
Solution: Curvature arises from a change in the slope of the tangent lines. The more quickly these slopes change, the more curved the graph.

Conclusion: The larger the magnitude of $f^{\prime \prime}(x)$ near $x=a$, the greater the curvature of the graph and the larger the potential error in using linear approximation.

The Error in Linear Approximation

Theorem: [The Error in Linear Approximation]
Assume that $f(x)$ is such that $\left|f^{\prime \prime}(x)\right| \leq M$ for each x in an interval I containing a point a. Then

$$
\left|f(x)-L_{a}(x)\right| \leq \frac{M}{2}(x-a)^{2}
$$

for each $x \in I$.

The Error in Linear Approximation

Example: We saw that if $f(x)=\sin (x)$, then

$$
L_{0}(x)=x
$$

so

$$
\sin (.01) \cong L_{0}(.01)=.01
$$

Since $|\sin (x)| \leq|x|$, we have

$$
\left|f^{\prime \prime}(x)\right|=|-\sin (x)| \leq|x| \leq .01
$$

for each $x \in[-.01, .01]$.
The Error in Linear Approximation Theorem tells us that

$$
\begin{aligned}
\left|\sin (.01)-L_{0}(.01)\right| & \leq \frac{M}{2}(.01-0)^{2} \\
& =\frac{.01}{2}(.01)^{2} \\
& =5 \times 10^{-7} .
\end{aligned}
$$

