Instantaneous Velocity

Created by

Barbara Forrest and Brian Forrest

Instantaneous Velocity

Problem:

A stone is thrown straight upward in the air and eventually falls back to the ground. How can we define the instantaneous velocity of the stone at any given time?

Instantaneous Velocity

Recall: The average velocity of the stone relative to the ground over the period from time $t=t_{0}$ to $t=t_{1}$ is given by the formula
where

$$
\begin{aligned}
V_{\mathrm{ave}} & =\frac{\text { displacement (change in position) }}{\text { elapsed time }} \\
& =\frac{s\left(t_{1}\right)-s\left(t_{0}\right)}{t_{1}-t_{0}}=\frac{\triangle s}{\triangle t} \\
\triangle s & =s\left(t_{1}\right)-s\left(t_{0}\right) \text { and } \triangle t=t_{1}-t_{0}
\end{aligned}
$$

Instantaneous Velocity

Geometric Interpretation: $V_{\text {ave }}$ is the slope m of the "secant line" to the graph of $s(t)$ through the points $\left(t_{0}, s\left(t_{0}\right)\right)$ and $\left(t_{1}, s\left(t_{1}\right)\right)$.

Instantaneous Velocity

Question: How do we define instantaneous velocity at a point t_{0} ?

Instantaneous Velocity

Key Assumption: The velocity of the stone should not vary too much over very small intervals of time. Therefore, if h is small

$$
\begin{aligned}
v\left(t_{0}\right) & \cong v_{\mathrm{ave}} \\
& =\frac{s\left(t_{0}+h\right)-s\left(t_{0}\right)}{\left(t_{0}+h\right)-t_{0}} \\
& =\frac{s\left(t_{0}+h\right)-s\left(t_{0}\right)}{h}
\end{aligned}
$$

Instantaneous Velocity

Definition: [Instantaneous Velocity]

The instantaneous velocity of an object at time t_{0} is given by

$$
v\left(t_{0}\right)=\lim _{h \rightarrow 0} \frac{s\left(t_{0}+h\right)-s\left(t_{0}\right)}{h}
$$

provided this limit exists.

