Implicit Differentiation

Created by

Barbara Forrest and Brian Forrest

Relations and Implicit Functions

Example: Consider the relation

$$
\left\{(x, y) \mid x^{2}+y^{2}=1\right\}
$$

Relations and Implicit Functions

Example: Consider the relation

$$
\left\{(x, y) \mid x^{2}+y^{2}=1\right\}
$$

Note: This relation is not a function.

Relations and Implicit Functions

Example: Consider the relation

$$
\left\{(x, y) \mid x^{2}+y^{2}=1\right\}
$$

Note: This relation is not a function. However, by restricting the range of the relation we can generate many functions.

Relations and Implicit Functions

Example: Consider the relation

$$
\left\{(x, y) \mid x^{2}+y^{2}=1\right\}
$$

Note: This relation is not a function. However, by restricting the range of the relation we can generate many functions. We say these functions are implicitly defined by the relation.

Relations and Implicit Functions

Example (continued): The relation

$$
\left\{(x, y) \mid x^{2}+y^{2}=1\right\}
$$

implies two functions

$$
y=f(x)=+\sqrt{1-x^{2}} \quad \text { and } \quad y=g(x)=-\sqrt{1-x^{2}}
$$

Relations and Implicit Functions

Example (continued): The relation

$$
\left\{(x, y) \mid x^{2}+y^{2}=1\right\}
$$

implies two functions

$$
y=f(x)=+\sqrt{1-x^{2}} \quad \text { and } \quad y=g(x)=-\sqrt{1-x^{2}}
$$

with derivatives

$$
f^{\prime}(x)=-\frac{x}{\sqrt{1-x^{2}}}=-\frac{x}{y}
$$

Relations and Implicit Functions

Example (continued): The relation

$$
\left\{(x, y) \mid x^{2}+y^{2}=1\right\}
$$

implies two functions

$$
y=f(x)=+\sqrt{1-x^{2}} \quad \text { and } \quad y=g(x)=-\sqrt{1-x^{2}}
$$

with derivatives

$$
f^{\prime}(x)=-\frac{x}{\sqrt{1-x^{2}}}=-\frac{x}{y} \quad \text { and } \quad g^{\prime}(x)=\frac{x}{\sqrt{1-x^{2}}}=-\frac{x}{y}
$$

Implicit Differentiation

Example (continued): If

$$
y=h(x)
$$

is any differentiable function which satisfies

$$
x^{2}+y^{2}=1
$$

then

$$
\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}(1)
$$

Hence

$$
2 x+2 y \cdot \frac{d y}{d x}=0
$$

Finally

$$
2 y \cdot \frac{d y}{d x}=-2 x \Rightarrow \frac{d y}{d x}=-\frac{x}{y}
$$

provided that $\boldsymbol{y} \neq \mathbf{0}$.
Note: The process of finding the derivative without knowing the explicit formula for the function is called implicit differentiation.

Folium of Descartes

Example: The graph of the relation

$$
\left\{(x, y) \mid x^{3}+y^{3}=6 x y\right\}
$$

is called the Folium of Descartes.

Folium of Descartes

Example: The graph of the relation

$$
\left\{(x, y) \mid x^{3}+y^{3}=6 x y\right\}
$$

is called the Folium of Descartes.

Folium of Descartes

Example: The graph of the relation

$$
\left\{(x, y) \mid x^{3}+y^{3}=6 x y\right\}
$$

is called the Folium of Descartes.

Folium of Descartes

Example: Find $h^{\prime}(3)$ if
$y=h(x)$ is a differentiable function with $h(3)=3$ satisfying

$$
x^{3}+y^{3}=6 x y
$$

Then

$$
\frac{d}{d x}\left(x^{3}+y^{3}\right)=\frac{d}{d x}(6 x y) .
$$

Hence

$$
\begin{aligned}
& 3 x^{2}+3 y^{2} \frac{d y}{d x}=6 y+6 x \frac{d y}{d x} \\
& \text { and }
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{6 y-3 x^{2}}{3 y^{2}-6 x}
$$

Letting $x=3$ and $y=3$ gives

$$
h^{\prime}(3)=\left.\frac{d y}{d x}\right|_{(3,3)}=\frac{6(3)-3\left(3^{2}\right)}{3\left(3^{2}\right)-6(3)}=-1 .
$$

Caution!

Example: Suppose that

$$
\begin{equation*}
x^{4}+y^{4}=-1-x^{2} y^{2} \tag{*}
\end{equation*}
$$

Find $\frac{d y}{d x}$.
Solution: We get

$$
\frac{d}{d x}\left(x^{4}+y^{4}\right)=\frac{d}{d x}\left(-1-x^{2} y^{2}\right)
$$

SO

$$
\frac{d y}{d x}=\frac{-2 x y^{2}-4 x^{3}}{4 y^{3}+2 x^{2} y}
$$

Important Observation:
The equation $(*)$ has no solutions, so $(* *)$ is meaningless!

