Inverse Function Theorem

Created by
Barbara Forrest and Brian Forrest

Invertibility and Differentiability

Problem: If $f(x)$ is invertible with inverse $g(y)$ and if $f(x)$ is differentiable at $x=a$, what can we say about the differentiablity of $g(y)$ at $b=f(a)$?

Answer: We will see using the idea of linear approximations that

$$
g^{\prime}(b)=\frac{1}{f^{\prime}(a)}
$$

provided that $f^{\prime}(a) \neq 0$.

Invertibility and Differentiability

Observe: Given that $f(x)$ is differentiable at $x=a$ we have

$$
y=L_{a}^{f}(x)=f(a)+f^{\prime}(a)(x-a)
$$

If $f^{\prime}(a) \neq 0$, then $L_{a}^{f}(x)$ is invertible with

$$
\begin{aligned}
\left(L_{a}^{f}\right)^{-1}(x) & =a+\frac{1}{f^{\prime}(a)}(x-f(a)) \\
& =g(f(a))+\frac{1}{f^{\prime}(a)}(x-f(a))
\end{aligned}
$$

Inverse Function Theorem

Inverse Function Theorem

Inverse Function Theorem

Inverse Function Theorem

Inverse Function Theorem

Inverse Function Theorem

Inverse Function Theorem

Inverse Function Theorem

Inverse Function Theorem

Inverse Function Theorem

Inverse Function Theorem

Inverse Function Theorem

Theorem: [Inverse Function Theorem (IFT)]

Assume that $f(x)$ is continuous and invertible on $[c, d]$ with inverse $g(y)$, and $f(x)$ is differentiable at $a \in(c, d)$. If $f^{\prime}(a) \neq 0$, then $g(y)$ is differentiable at $b=f(a)$, and

$$
g^{\prime}(b)=\frac{1}{f^{\prime}(a)}=\frac{1}{f^{\prime}(g(b))} .
$$

Moreover, $L_{a}^{f}(x)$ is also invertible and

$$
\left(L_{a}^{f}\right)^{-1}(x)=L_{b}^{g}(x)=L_{f(a)}^{g}(x)
$$

Inverse Function Theorem

Example: Let $f(x)=x^{3}$ with $f^{-1}(y)=g(y)=y^{\frac{1}{3}}$. Let $a=2$. Find

$$
g^{\prime}(f(a))=g^{\prime}(8)
$$

Solution: We know that $f^{\prime}(x)=3 x^{2}$, so by the Inverse Function Theorem:

$$
\begin{aligned}
g^{\prime}(8) & =\frac{1}{f^{\prime}(2)} \\
& =\frac{1}{12}
\end{aligned}
$$

We also know that $g^{\prime}(y)=\frac{1}{3} y^{-\frac{2}{3}}$, so

$$
\begin{aligned}
g^{\prime}(8) & =\frac{1}{3} \cdot 8^{-\frac{2}{3}} \\
& =\frac{1}{12} .
\end{aligned}
$$

Inverse Function Theorem

Note:
Let $f(x)=x^{3}$ with $f^{-1}(y)=g(y)=y^{\frac{1}{3}}$.
Let $a=0$, so $b=f(0)=0$. We have

$$
f^{\prime}(0)=3 \cdot 0^{2}=0
$$

but

$$
g^{\prime}(y)=\frac{1}{3} y^{-\frac{2}{3}}
$$

so $g(y)$ is not differentiable at $b=0$.

Inverse Function Theorem

Derivative of $\ln (x)$

Example: We know that $f(x)=\ln (x)$ is invertible with inverse $g(y)=e^{y}$. Since e^{y} is differentiable for every $y \in \mathbb{R}$ the Inverse Function Theorem tells us that $f(x)=\ln (x)$ is differentiable for all $x>0$ and that

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{g^{\prime}(f(x))} \\
& =\frac{1}{e^{f(x)}} \\
& =\frac{1}{e^{\ln (x)}} \\
& =\frac{1}{x}
\end{aligned}
$$

Theorem: [Derivative of $\ln (x)$]
The function $f(x)=\ln (x)$ is differentiable at $x>0$, and

$$
f^{\prime}(x)=\frac{1}{x}
$$

