Exponential Growth and Decay

Created by

Barbara Forrest and Brian Forrest

Exponential Growth and Decay

Remark: Let $Q(t)$ denote either the size of a bacterial population at time t, or the quantity of a radioactive substance at time t. Then in both cases it is known that the rate of change of the quantity $Q(t)$ is proportional to $Q(t)$ itself.

That is,

$$
Q^{\prime}(t)=k Q(t)
$$

where $k \in \mathbb{R}$ is a fixed constant.
Problem: Find all functions $Q(t)$ satisfying the differential equation

$$
Q^{\prime}(t)=k Q(t)
$$

where $k \in \mathbb{R}$ is a fixed constant.

Exponential Growth and Decay

Problem: Find all functions $Q(t)$ satisfying the differential equation

$$
Q^{\prime}(t)=k Q(t)
$$

where $k \in \mathbb{R}$ is a fixed constant.
Solution: Let

$$
Q_{0}(t)=e^{k t}
$$

Then

$$
Q_{0}^{\prime}(t)=k e^{k t}=k Q_{0}(t)
$$

Assume that $Q^{\prime}(t)=k Q(t)$ and let

Then

$$
H(t)=\frac{Q(t)}{e^{k t}}
$$

$$
H^{\prime}(t)=\frac{e^{k t} Q^{\prime}(t)-k e^{k t} Q(t)}{e^{2 k t}}
$$

$$
=\frac{k e^{k t} Q(t)-k e^{k t} Q(t)}{e^{2 k t}}
$$

so

$$
=0
$$

$$
C=H(t)=\frac{Q(t)}{e^{k t}} \Rightarrow Q(t)=C e^{k t}
$$

Exponential Growth and Decay

Remarks:

1) Both the size of a bacterial population at time t, or the quantity of a radioactive substance at time t would then be of the form

$$
Q(t)=C e^{k t}
$$

2) Since $Q(t) \geq 0$ this would mean that C is positive. Moreover, since

$$
Q(0)=C e^{k \cdot 0}=C
$$

the constant C represents the initial population or the initial quantity present at time $t=0$.

Exponential Growth and Decay

Remarks (continued):
3) In the case of the growing bacterial colony, the derivative $Q^{\prime}(t)=k Q(t)$ must also be positive. This forces k to be greater than 0 (i.e., $k>0$). Hence, the graph of the bacterial population looks like that of a typical exponential function.

Exponential Growth and Decay

Remarks (continued):
4) In the case of radioactive decay, the quantity $Q(t)$ decreases with time. Consequently, k must be less than 0 (i.e., $k<0$). This produces a graph that is typical of an exponential function with a base that is less than 1.

Exponential Growth and Decay

Example: A bacterial colony starts with a population of 1000. After 2 hours, the population is estimated to be 3500 . What would you expect the population to be after 7 hours?
Solution: Let $P(t)$ denote the population of the bacterial colony t hours after the first estimate. Since the rate of growth of the population is proportional to the size of the population,

$$
P(t)=C e^{k t}
$$

Since C represents the initial population size, $C=1000$ and

$$
P(t)=1000 e^{k t}
$$

We also know that

$$
3500=P(2)=1000 e^{k \cdot 2}
$$

Solving for k gives us that

$$
\frac{3500}{1000}=e^{2 k} \Rightarrow k=\frac{\ln (3.5)}{2}
$$

Finally,

$$
\begin{aligned}
P(7) & =1000 e^{7\left(\frac{\ln (3.5)}{2}\right)} \\
& \approx 80212 \text { bacteria. }
\end{aligned}
$$

Exponential Growth and Decay

Fact: The half-life of a radioactive isotope is the time it takes for a given quantity to decay to $\frac{1}{2}$ of its original mass.
The half-life of Uranium-238 ($\mathrm{U}-238$) is 4.5×10^{9} years. The biproduct of this decay is lead.

Example: During a lava flow, molten lead is separated from the rest of the lava so we can assume that a fresh lava flow will be free of lead. However, as U-238 decays in the flow, trace amounts of lead will appear. Use this to determine the age of a lava flow that contains 3 molecules of lead to every 5000 molecules of U-238.

Exponential Growth and Decay

Solution: The quantity $Q(t)$ of U -238 is decreasing at a rate proportional to the amount left at any given time, so

$$
Q(t)=C e^{k t}
$$

where C represents the original quantity of the isotope.
We can find k by using the half-life of the isotope. In particular, we know that if $t_{0}=4.5 \times 10^{9}$, then

$$
C e^{k t_{0}}=Q\left(t_{0}\right)=\frac{C}{2}
$$

SO

$$
e^{k t_{0}}=Q\left(t_{0}\right)=\frac{1}{2}
$$

Next take the natural logarithm of both sides of the equation to get

$$
k t_{0}=\ln \left(\frac{1}{2}\right)
$$

and finally that

$$
k=\frac{1}{t_{0}} \ln \left(\frac{1}{2}\right)=\frac{1}{4.5 \times 10^{9}} \ln \left(\frac{1}{2}\right) .
$$

Note that this shows k is actually independent of the initial quantity C.

Exponential Growth and Decay

Solution (continued): The data tells us that if we began with 5003 molecules of $\mathrm{U}-238$, we would now have 5000 . Therefore, if t_{1} is the age of the lava flow, then $C=5003$ and we have $Q\left(t_{1}\right)=5000$. This means that

$$
5000=5003 e^{k t_{1}}
$$

so

$$
e^{k t_{1}}=\frac{5000}{5003}
$$

Finally,

$$
\begin{aligned}
t_{1} & =\frac{\ln \left(\frac{5000}{5003}\right)}{k} \\
& =\left(4.5 \times 10^{9}\right)\left(\frac{\ln \left(\frac{5000}{5003}\right)}{\ln \left(\frac{1}{2}\right)}\right) \\
& \approx 3.894108 \times 10^{6} \text { years. }
\end{aligned}
$$

Therefore, the lava flow is approximately 3.89 million years old.

