The Derivative Function

Created by

Barbara Forrest and Brian Forrest

The Derivative at a Point

Recall:

Definition: [Derivative]

We say that the function $f(x)$ is differentiable at $x=a$ if

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists.

Equivalently:

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

if this limit exists.

The Derivative Function

Definition: [Derivative Function]

We say that a function $f(x)$ is differentiable on an interval I if $f^{\prime}(a)$ exists for every $a \in I$.

In this case, we define the derivative function on I, denoted by f^{\prime}, where

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

That is, the value of the derivative function at x is simply the derivative of f at x for each $x \in I$.

Leibniz Notation

Leibniz Notation: Given a function $y=f(t)$, Leibniz wrote

$$
\frac{d y}{d t} \text { or } \frac{d f}{d t}
$$

to represent the derivative of \boldsymbol{y} (or equivalently, of f) with respect to t.
An alternate form of Leibniz's notation is to write

$$
\frac{d}{d t}(f(t))
$$

to indicate that $f(t)$ is to be differentiated with respect to the variable t.
The symbol

$$
\frac{d}{d t}
$$

is called a differential operator.
In Leibniz's notation, we denote $f^{\prime}(a)$, the derivative at $t=a$, by

$$
\left.\frac{d y}{d t}\right|_{a} \quad \text { or }\left.\quad \frac{d f}{d t}\right|_{a}
$$

Higher Derivatives

Definition: [Higher Derivatives]

Let $f(x)$ be a differentiable function with derivative $f^{\prime}(x)$. If $f^{\prime}(x)$ is also differentiable, then its derivative

$$
\frac{d}{d x}\left(f^{\prime}(x)\right)
$$

is called the second derivative of $f(x)$ and it is usually denoted by

$$
f^{\prime \prime}(x) \quad \text { or } \quad f^{(2)}(x) \text { or } \frac{d^{2}}{d x^{2}}(f(x))
$$

If $f^{\prime \prime}(x)$ is also differentiable, then its derivative is called the third derivative of $f(x)$ and it is denoted by

$$
f^{\prime \prime \prime}(x) \text { or by } f^{(3)}(x)
$$

In general, for any $n \geq 1$,

$$
f^{(n+1)}(x)=\frac{d}{d x}\left(f^{(n)}(x)\right)
$$

and $f^{(n)}(x)$ is called the n-th derivative of $f(x)$.

Higher Derivatives

Note: $f^{\prime \prime}(x)$ impacts the geometry of the graph of $f(x)$. In particular, the larger the magnitude of $f^{\prime \prime}(x)$, the more curved the graph of $f(x)$.

Derivative of a Constant Function

Example: [Derivative of a Constant Function]
Assume that $f(x)=c$ for all $x \in \mathbb{R}$ and let $a \in \mathbb{R}$. Then

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =0
\end{aligned}
$$

Hence $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$.

Derivative of a Linear Function

Example: [Derivative of a Linear Function]

Assume that

Hence

$$
f^{\prime}(x)=m
$$

for all $x \in \mathbb{R}$.

Derivative of $f(x)=x^{2}$

Example: Calculate the derivative of $f(x)=x^{2}$.
Note: Unlike the previous examples, the derivative appears to vary with the choice of x.

Derivative of $f(x)=x^{2}$

Example: [Derivative of a Quadratic Function]

Derivative of $f(x)=x^{2}$

Example: [Derivative of a Quadratic Function]

Note: If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$, so $f^{\prime \prime}(x)=2$.

