Derivatives and Continuity

Created by

Barbara Forrest and Brian Forrest

Derivatives and Continuity

Definition: [Derivative]

We say that the function $f(t)$ is differentiable at $t=a$ if

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists.

Equivalently:

$$
f^{\prime}(a)=\lim _{t \rightarrow a} \frac{f(t)-f(a)}{t-a}
$$

if this limit exists.

Derivatives and Continuity

Question: Is there a relationship between differentiability and continuity?

Key Observation: Assume that $f(t)$ is differentiable at $t=a$. Then

$$
f^{\prime}(a)=\lim _{t \rightarrow a} \frac{f(t)-f(a)}{t-a}
$$

SO

$$
0=f^{\prime}(a) \cdot \lim _{t \rightarrow a}(t-a)=\lim _{t \rightarrow a} f(t)-f(a) .
$$

Hence

$$
\lim _{t \rightarrow a} f(t)=f(a)
$$

and $f(t)$ is continuous at $t=a$.

Derivatives and Continuity

Theorem: [Differentiation Implies Continuity]
Assume that $f(t)$ is differentiable at $t=a$. Then $f(t)$ is continuous at $t=a$.

Derivatives and Continuity

Then

$$
\lim _{t \rightarrow 0^{+}} \frac{f(t)-f(0)}{t-0}=\lim _{t \rightarrow 0^{+}} \frac{1}{t}=\infty
$$

since $f(0)=0$ and $f(t)=1$ if $t>0$.

Derivatives and Continuity

Example: Let $f(x)=|x|$ and let $a=0$. Then $f(x)$ is continuous at 0 . However, since $f(0)=0$, we get that

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{|x|}{x} .
$$

Derivatives and Continuity

Example (continued):
If $h_{1}>0$, then the slope of the secant line through $(0, f(0))=(0,0)$ and $\left(h_{1}, f\left(h_{1}\right)\right)=\left(h_{1}, h_{1}\right)$ is 1 .

If $h_{2}<0$, then the slope of the secant line through $(0, f(0))=(0,0)$ and $\left(h_{2}, f\left(h_{2}\right)\right)=\left(h_{2},-h_{2}\right)$ is -1 .

Derivatives and Continuity

Example (continued): Therefore

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} & =\lim _{x \rightarrow 0^{+}} \frac{|x|}{x} \\
& =\lim _{x \rightarrow 0^{+}} \frac{x}{x} \\
& =1
\end{aligned}
$$

while

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} & =\lim _{x \rightarrow 0^{-}} \frac{|x|}{x} \\
& =\lim _{x \rightarrow 0^{-}} \frac{-x}{x} \\
& =-1
\end{aligned}
$$

Hence $f(x)=|x|$ is continuous, but not differentiable at $\boldsymbol{x}=\mathbf{0}$.

Derivatives and Continuity

Historically Important Question: Does there exist a function $f(x)$ that is continuous at each $x \in \mathbb{R}$, but not differentiable at even one point?

Answer: Yes! [Karl Weierstrass (1872)]

$$
f(x)=\sum_{n=0}^{\infty} \frac{1}{2^{n}} \sin \left(2^{n} x\right)
$$

Note:

1) The most famous application of these types of functions are fractals.

2) It can be shown that most continuous functions are nowhere differentiable.
