Created by

Barbara Forrest and Brian Forrest

### **Definition:** [Derivative]

We say that the function f(t) is differentiable at t = a if

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

exists.

Equivalently:

$$f'(a) = \lim_{t \to a} \frac{f(t) - f(a)}{t - a}$$

if this limit exists.

Question: Is there a relationship between differentiability and continuity?

**Key Observation:** Assume that f(t) is differentiable at t = a. Then

$$f'(a) = \lim_{t \to a} \frac{f(t) - f(a)}{t - a}$$

SO

$$0 = f'(a) \cdot \lim_{t \to a} (t-a) = \lim_{t \to a} f(t) - f(a).$$

Hence

$$\lim_{t \to a} f(t) = f(a)$$

and f(t) is continuous at t = a.

### **Theorem:** [Differentiation Implies Continuity]

Assume that f(t) is differentiable at t = a. Then f(t) is continuous at t = a.



**Example:** Let f(x) = |x| and let a = 0. Then f(x) is continuous at 0. However, since f(0) = 0, we get that





#### Example (continued):

If  $h_1 > 0$ , then the slope of the secant line through (0, f(0)) = (0, 0) and  $(h_1, f(h_1)) = (h_1, h_1)$  is 1.

If  $h_2 < 0$ , then the slope of the secant line through (0, f(0)) = (0, 0)and  $(h_2, f(h_2)) = (h_2, -h_2)$  is -1.



Hence f(x) = |x| is continuous, but not differentiable at x = 0.

**Historically Important Question:** Does there exist a function f(x) that is continuous at each  $x \in \mathbb{R}$ , but not differentiable at even one point?

Answer: Yes! [Karl Weierstrass (1872)]

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} \sin(2^n x)$$

#### Note:

1) The most famous application of these types of functions are *fractals*.



2) It can be shown that *most* continuous functions are nowhere differentiable.