Derivatives

Created by

Barbara Forrest and Brian Forrest

Average Rate of Change

Definition: [Average Rate of Change]

Given a function $f(t)$, we can define the average rate of change of $f(t)$ as t goes from t_{0} to t_{1} to be the ratio

$$
\frac{f\left(t_{1}\right)-f\left(t_{0}\right)}{t_{1}-t_{0}}
$$

Note: If we fix a point t_{0} and let $h=t_{1}-t_{0}$ be small, then

$$
\frac{f\left(t_{0}+h\right)-f\left(t_{0}\right)}{h}
$$

is an estimate of the instantaneous rate of change of $f(t)$ at t_{0}.

Definition: [Instantaneous Rate of Change]

Given a function $f(t)$, we can define the instantaneous rate of change of $f(t)$ at t_{0} to be

$$
\lim _{h \rightarrow 0} \frac{f\left(t_{0}+h\right)-f\left(t_{0}\right)}{h}
$$

The Derivative

Definition: [Newton Quotient]

Given a function $f(t)$, a point $t=a$ and $h \neq 0$, the ratio

$$
\frac{f(a+h)-f(a)}{h}
$$

is called a Newton Quotient for $f(t)$ centered at $t=a$.

Note: Geometrically, the Newton Quotient represents the slope of the secant line to the graph of $f(t)$ through the points $(a, f(a))$ and
$(a+h, f(a+h))$.

The Derivative

Definition: [The Derivative at $t=a$]
We say that the function $f(t)$ is differentiable at $t=a$ if

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists.
In this case, we write

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

and $f^{\prime}(a)$ is the derivative of $f(t)$ at $t=a$.
Note: If $t=\boldsymbol{a}+\boldsymbol{h}$, then as $\boldsymbol{h} \rightarrow \mathbf{0}$ we have $\boldsymbol{t} \rightarrow \boldsymbol{a}$. Furthermore, since $h=t-a$, we get

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{t \rightarrow a} \frac{f(t)-f(a)}{t-a}
\end{aligned}
$$

provided the limits exist.

Derivative as Instantaneous Rate of Change

Observation: If $y=f(t), \Delta y=f(t)-f(a)$ and $\Delta t=t-a$, then the Newton Quotient

$$
\frac{\Delta y}{\Delta t}=\frac{f(t)-f(a)}{t-a}
$$

is the average change in \boldsymbol{y}.
Therefore,

$$
f^{\prime}(a)=\lim _{\Delta t \rightarrow 0} \frac{\triangle y}{\Delta t}
$$

is the limit of average rates of change over smaller and smaller intervals and so this represents the instantaneous rate of change of y with respect to t.

Derivative as Instantaneous Rate of Change

Example:

Let $s=s(t)$ represent the displacement of an object. Then

$$
\begin{aligned}
s^{\prime}\left(t_{0}\right) & =\lim _{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t} \\
& =\lim _{t \rightarrow t_{0}} \frac{s(t)-s\left(t_{0}\right)}{t-t_{0}} \\
& =\lim _{h \rightarrow 0} \frac{s\left(t_{0}+h\right)-s\left(t_{0}\right)}{h} \\
& =v\left(t_{0}\right)
\end{aligned}
$$

where $v\left(t_{0}\right)$ is the instantaneous velocity of the object at time t_{0}.

Fact: Velocity is the derivative of displacement.

The Tangent Line

Question: Does there exist a geometric interpretation of the derivative?
Observation: If $f(x)$ is differentiable at $x=a$, the slopes of the secant lines through $(a, f(a))$ and $(a+h, f(a+h))$ converge to $f^{\prime}(a)$ as $\boldsymbol{h} \rightarrow \mathbf{0}$.

Definition: [Tangent Line]

The tangent line to the graph of $f(x)$ at $x=a$ is the line passing through $(a, f(a))$ with slope equal to $f^{\prime}(a)$. That is,

$$
y=f(a)+f^{\prime}(a)(x-a)
$$

Derivative of a Constant Function

Example: [Derivative of a Constant Function]

Assume that $f(x)=c$ for all $x \in \mathbb{R}$ and let $a \in \mathbb{R}$. Then

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =0
\end{aligned}
$$

Derivative of a Linear Function

Example: [Derivative of a Linear Function]

Assume that

