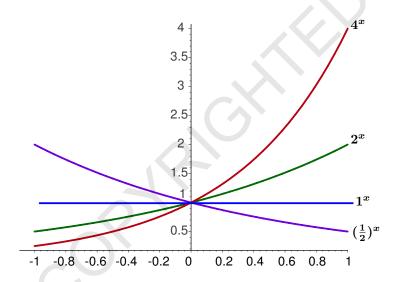
Derivatives of Exponential Functions

Created by

Barbara Forrest and Brian Forrest



Problem: If $f(x) = a^x$ where a > 0, what is f'(x)?

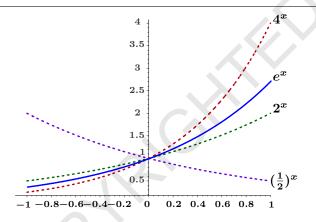
Problem: If $f(x) = a^x$ where a > 0, what is f'(x)?

$$f'(x) = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$

$$= \lim_{h \to 0} \frac{a^x (a^h - 1)}{h}$$

$$= a^x \cdot \left(\lim_{h \to 0} \frac{a^h - 1}{h}\right)$$

$$= a^x \cdot f'(0).$$



Definition: [Euler's Constant e]

Let $f(x)=a^x$. Of all the possible choices for a>0, e is the unique base such that if $f(x)=e^x$, then f'(0)=1.

$$2 < e < 4 \Rightarrow e \cong 2.718281828$$

Summary: Let a > 0. Then:

- 1) If $f(x) = a^x$, then $f'(x) = f'(0) \cdot a^x$.
- 2) If $f(x) = e^x$, then $f'(x) = e^x$.

Problem: If $f(x) = a^x$, and $f'(x) = f'(0) \cdot a^x$, what is f'(0)?

Answer: ln(a)

Theorem: [Derivative of a^x]

Let a > 0. If $f(x) = a^x$, then

$$f'(x) = \ln(a) \cdot a^x$$

for all $x \in \mathbb{R}$.

Special Case: Since ln(e) = 1, we have:

Theorem: [Derivative of e^x]

Let
$$f(x) = e^x$$
. Then

$$f'(x) = e^x$$

for all $x \in \mathbb{R}$.