Arithmetic Rules for Differentiation

Created by

Barbara Forrest and Brian Forrest

Arithmetic Rules for Differentiation

Theorem: [The Arithmetic Rules for Differentiation]
Assume that $f(x)$ and $g(x)$ are both differentiable at $x=a$.

1) The Constant Multiple Rule:

Let $h(x)=c f(x)$. Then $h(x)$ is differentiable at $x=a$ and

$$
h^{\prime}(a)=c \cdot f^{\prime}(a)
$$

2) The Sum Rule:

Let $h(x)=f(x)+g(x)$. Then $h(x)$ is differentiable at $x=a$ and

$$
h^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)
$$

3) The Product Rule:

Let $h(x)=f(x) g(x)$. Then $h(x)$ is differentiable at $x=a$ and

$$
h^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a)
$$

Arithmetic Rules for Differentiation

Theorem: [The Arithmetic Rules for Differentiation (continued)]
Assume that $f(x)$ and $g(x)$ are both differentiable at $x=a$.
4) The Reciprocal Rule:

Let $h(x)=\frac{1}{f(x)}$. If $f(a) \neq 0$, then $h(x)$ is differentiable at $x=a$ and

$$
h^{\prime}(a)=\frac{-f^{\prime}(a)}{(f(a))^{2}}
$$

5) The Quotient Rule:

Let $h(x)=\frac{f(x)}{g(x)}$. If $g(a) \neq 0$, then $h(x)$ is differentiable at $x=a$ and

$$
h^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{(g(a))^{2}}
$$

Arithmetic Rules for Differentiation

1) Proof of the Constant Multiple Rule:

Assume that $c \in \mathbb{R}$ and that $f(x)$ is differentiable at $x=a$. Then

$$
\begin{aligned}
(c f)^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{(c f)(a+h)-(c f)(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{c \cdot f(a+h)-c \cdot f(a)}{h} \\
& =c \cdot\left(\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}\right) \\
& =c \cdot f^{\prime}(a)
\end{aligned}
$$

Arithmetic Rules for Differentiation

2) Proof of the Sum Rule:

Assume that $f(x)$ and $g(x)$ are differentiable at $x=a$. Then

$$
\begin{aligned}
(f+g)^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{(f+g)(a+h)-(f+g)(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(a+h)+g(a+h)-f(a)-g(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}+\lim _{h \rightarrow 0} \frac{g(a+h)-g(a)}{h} \\
& =f^{\prime}(a)+g^{\prime}(a)
\end{aligned}
$$

Arithmetic Rules for Differentiation

3) Proof of the Product Rule:

Observe: We have

$$
\begin{aligned}
(f g)(a+h)-(f g)(a)= & {[f(a+h) g(a+h)-f(a+h) g(a)] } \\
& +[f(a+h) g(a)-f(a) g(a)]
\end{aligned}
$$

$$
\begin{aligned}
(f g)^{\prime}(a)= & \lim _{h \rightarrow 0} \frac{(f g)(a+h)-(f g)(a)}{h} \\
= & \lim _{h \rightarrow 0} \frac{f(a+h)(g(a+h)-g(a))}{h} \\
& +\lim _{h \rightarrow 0} \frac{g(a)(f(a+h)-f(a))}{h} \\
= & \lim _{h \rightarrow 0} f(a+h) \cdot \lim _{h \rightarrow 0} \frac{(g(a+h)-g(a))}{h} \\
& +g(a) \cdot \lim _{h \rightarrow 0} \frac{(f(a+h)-f(a))}{h} \\
= & f(a) g^{\prime}(a)+f^{\prime}(a) g(a) .
\end{aligned}
$$

Arithmetic Rules for Differentiation

4) Proof of the Reciprocal Rule:

Assume that $f(x)$ is differentiable at $x=a$. Then

$$
\begin{aligned}
\left(\frac{1}{f}\right)^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{\frac{1}{f(a+h)}-\frac{1}{f(a)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(a)-f(a+h)}{f(a+h) f(a) h} \\
& =-\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \cdot \lim _{h \rightarrow 0} \frac{1}{f(a+h) f(a)} \\
& \left.=-f^{\prime}(a) \cdot \frac{1}{(f(a))^{2}} \quad \text { (by continuity at } x=a\right) \\
& =\frac{-f^{\prime}(a)}{(f(a))^{2}} .
\end{aligned}
$$

5) Proof of the Quotient Rule:

The proof of the Quotient Rule is a combination of the Product Rule and the Reciprocal Rule.

Power Rule for Differentiation

Note: We have seen that

$$
\frac{d}{d x}(x)=1 \quad \text { and } \quad \frac{d}{d x}\left(x^{2}\right)=2 x
$$

Using the Binomial Theorem we can show that if $\boldsymbol{n} \in \mathbb{N}$, then

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

Theorem: [The Power Rule for Differentiation]
Assume that $\alpha \in \mathbb{R}, \alpha \neq 0$, and $f(x)=x^{\alpha}$. Then $f(x)$ is differentiable and

$$
f^{\prime}(x)=\alpha x^{\alpha-1}
$$

wherever $x^{\alpha-1}$ is defined.

Differentiating Polynomials and Rational Functions

Examples: Differentiating Polynomials and Rational Functions

1) Let $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ be a polynomial.

Then $P(x)$ is always differentiable and

$$
P^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+n a_{n} x^{n-1}
$$

2) Using the Quotient Rule, we see that a rational function

$$
R(x)=\frac{P(x)}{Q(x)}
$$

is differentiable at any point where $Q(x) \neq 0$.

Differentiating Polynomials and Rational Functions

Example:

If

$$
R(x)=\frac{x+2}{x^{2}-1}
$$

then $R(x)$ is differentiable provided that $x^{2}-1 \neq 0$. That is, when $x \neq \pm 1$. Moreover,

$$
\begin{aligned}
R^{\prime}(x) & =\frac{\left(\frac{d}{d x}(x+2)\right)\left(x^{2}-1\right)-(x+2)\left(\frac{d}{d x}\left(x^{2}-1\right)\right)}{\left(x^{2}-1\right)^{2}} \\
& =\frac{1 \cdot\left(x^{2}-1\right)-(x+2)(2 x)}{\left(x^{2}-1\right)^{2}} \\
& =\frac{\left(x^{2}-1\right)-2 x^{2}-4 x}{\left(x^{2}-1\right)^{2}} \\
& =\frac{-x^{2}-4 x-1}{\left(x^{2}-1\right)^{2}} .
\end{aligned}
$$

