Squeeze Theorem for Limits of Functions

Created by

Barbara Forrest and Brian Forrest

Theorem: [Squeeze Theorem for Limits]

Assume that f(x), g(x), and h(x) are such that

 $g(x) \leq f(x) \leq h(x)$

for all $x \neq a$.

Assume also that

$$\lim_{x \to a} g(x) = L = \lim_{x \to a} h(x).$$

Then $\lim_{x \to a} f(x)$ exists and

 $\lim_{x \to a} f(x) = L.$

Squeeze Theorem for Limits

Example

Example

We know

$$|\sin\left(rac{1}{x}
ight)| \leq 1 \Rightarrow |x\sin\left(rac{1}{x}
ight)| \leq |x| \ \Rightarrow - |x| \leq x\sin\left(rac{1}{x}
ight) \leq |x|,$$

for all $x \neq 0$. Hence,

 $\lim_{x \to 0} - \mid x \mid = 0 = \lim_{x \to 0} \mid x \mid \ \Rightarrow \lim_{x \to 0} x \sin(\frac{1}{x}) = 0.$

Example

Remark: The graph of $sin(\theta)$ suggests that

 $\lim_{\theta \to 0} \sin(\theta) = 0.$

The Squeeze Theorem can be used to confirm this limit.

$\lim_{ heta ightarrow 0}\sin(heta)=0$

 $\lim_{\theta \to 0} \sin(\theta) = 0$

Observation (continued): Let $\frac{-\pi}{2} < \theta < 0$. Since $\sin(\theta)$ is an *odd* function,

$$\sin(-\theta) = -\sin(\theta),$$

and since if $heta
ightarrow 0^-$, we have $0<- heta<rac{\pi}{2}$ and $- heta
ightarrow 0^+$,

$$\lim_{\theta \to 0^{-}} \sin(\theta) = \lim_{\theta \to 0^{-}} -\sin(-\theta)$$
$$= \lim_{(-\theta) \to 0^{+}} -\sin(-\theta)$$
$$= -\lim_{(-\theta) \to 0^{+}} \sin(-\theta)$$
$$= -1 \cdot 0$$
$$= 0.$$

Finally,

$$\lim_{\theta \to 0^{-}} \sin(\theta) = 0 = \lim_{\theta \to 0^{+}} \sin(\theta)$$

 $\lim_{\theta \to 0} \sin(\theta) = 0.$

SO

 $\lim_{\theta \to 0} \cos(\theta) = 1$

Note: We have just seen that

 $\lim_{\theta \to 0} \sin(\theta) = 0.$

We also know that on $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$,

$$\cos(heta) = \sqrt{1 - \sin^2(heta)}.$$

Hence,

$$\lim_{\theta \to 0} \cos(\theta) = \lim_{\theta \to 0} \sqrt{1 - \sin^2(\theta)}$$
$$= \sqrt{1 - \lim_{\theta \to 0} \sin^2(\theta)}$$
$$= \sqrt{1}$$
$$= 1.$$