Squeeze Theorem for Limits of Functions

Created by

Barbara Forrest and Brian Forrest

Squeeze Theorem for Limits

Theorem: [Squeeze Theorem for Limits]

Assume that $f(x), g(x)$, and $h(x)$ are such that

$$
g(x) \leq f(x) \leq h(x)
$$

for all $x \neq a$.
Assume also that

$$
\lim _{x \rightarrow a} g(x)=L=\lim _{x \rightarrow a} h(x) .
$$

Then $\lim _{x \rightarrow a} f(x)$ exists and

$$
\lim _{x \rightarrow a} f(x)=L .
$$

Squeeze Theorem for Limits

Example

Example

We know

$$
\left|\sin \left(\frac{1}{x}\right)\right| \leq 1 \Rightarrow\left|x \sin \left(\frac{1}{x}\right)\right| \leq|x| \Rightarrow-|x| \leq x \sin \left(\frac{1}{x}\right) \leq|x|
$$

for all $\boldsymbol{x} \neq \mathbf{0}$. Hence,

$$
\lim _{x \rightarrow 0}-|x|=0=\lim _{x \rightarrow 0}|x| \Rightarrow \lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0
$$

Example

$\lim _{\theta \rightarrow 0} \sin (\theta)=0$

Remark: The graph of $\sin (\theta)$ suggests that

$$
\lim _{\theta \rightarrow 0} \sin (\theta)=0
$$

The Squeeze Theorem can be used to confirm this limit.
$\lim _{\theta \rightarrow 0} \sin (\theta)=0$

Observation:

For

$$
0<\theta \leq \frac{\pi}{2}
$$

we have

$$
0<\sin (\theta)<\theta
$$

Since

$$
\lim _{\theta \rightarrow 0^{+}} 0=0=\lim _{\theta \rightarrow 0^{+}} \theta
$$

then

$$
\lim _{\theta \rightarrow 0^{+}} \sin (\theta)=0
$$

$\lim _{\theta \rightarrow 0} \sin (\theta)=0$

Observation (continued): Let $\frac{-\pi}{2}<\theta<0$. Since $\sin (\theta)$ is an odd function,

$$
\sin (-\theta)=-\sin (\theta)
$$

and since if $\boldsymbol{\theta} \rightarrow 0^{-}$, we have $0<-\boldsymbol{\theta}<\frac{\pi}{2}$ and $-\boldsymbol{\theta} \rightarrow 0^{+}$,

$$
\begin{aligned}
\lim _{\theta \rightarrow 0^{-}} \sin (\theta) & =\lim _{\theta \rightarrow 0^{-}}-\sin (-\theta) \\
= & (-\theta) \rightarrow 0^{+} \\
& =-\lim (-\theta) \\
& =-1 \cdot 0 \\
& =0
\end{aligned}
$$

Finally,

$$
\lim _{\theta \rightarrow 0^{-}} \sin (\theta)=0=\lim _{\theta \rightarrow 0^{+}} \sin (\theta)
$$

SO

$$
\lim _{\theta \rightarrow 0} \sin (\theta)=0
$$

$\lim _{\theta \rightarrow 0} \cos (\theta)=1$
Note: We have just seen that

$$
\lim _{\theta \rightarrow 0} \sin (\theta)=0
$$

We also know that on $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$,

$$
\cos (\theta)=\sqrt{1-\sin ^{2}(\theta)}
$$

Hence,

$$
\begin{aligned}
\lim _{\theta \rightarrow 0} \cos (\theta) & =\lim _{\theta \rightarrow 0} \sqrt{1-\sin ^{2}(\theta)} \\
& =\sqrt{1-\lim _{\theta \rightarrow 0} \sin ^{2}(\theta)} \\
& =\sqrt{1} \\
& =1 .
\end{aligned}
$$

