Created by

Barbara Forrest and Brian Forrest

Question: Can we characterize limits of functions in terms of limits of sequences? In particular, if $\{x_n\}$ is a sequence with $x_n \neq a$ and $x_n \rightarrow a$, does $f(x_n) \rightarrow L$?

Choose $N_0 \in \mathbb{N}$ such that if $n \geq N_0$, then

$$0 < \mid x_n - a \mid < \delta$$

and hence,

$$| f(x_n) - L | < \epsilon \Rightarrow \lim_{n \to \infty} f(x_n) = L.$$

Theorem: [Sequential Characterization of Limits]

Let f(x) be defined on an open interval containing x = a, except possibly at x = a. Then the following are equivalent:

- 1. $\lim_{x \to a} f(x) = L.$
- 2. If $\{x_n\}$ is a sequence with $x_n \to a$ and $x_n \neq a$ for each $n \in \mathbb{N}$, then

$$\lim_{n \to \infty} f(x_n) = L.$$

Theorem: [Uniqueness of Limits]

Assume that $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} f(x) = M$. Then L = M.

That is, the limit of a function is unique.

Conclusion: No such L exists.

Strategy:

If you want to show that $\lim_{x \to a} f(x)$ does not exist you can do so by either of the following:

- 1) Find a sequence $\{x_n\}$ with $x_n \to a, x_n \neq a$ for which $\lim_{n \to \infty} f(x_n)$ does not exist.
- 2) Find two sequences $\{x_n\}$ and $\{y_n\}$ with $x_n \to a, x_n \neq a$ and $y_n \to a, y_n \neq a$ for which $\lim_{n \to \infty} f(x_n) = L$ and $\lim_{n \to \infty} f(y_n) = M$ but $L \neq M$.

A Strange Function

Example:

Let $f(x) = \sin(1/x)$.

What can we say about $\lim_{x o 0} f(x)$?

A Strange Function

Hence $\lim_{x \to 0} f(x)$ does **not** exist.