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Formal Definition of a Limit
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Recall: Formal Definition of a Limit
We say that L is the limit of f(x) as @ approaches a if for every e > 0 there
exists a § > 0 such that if

then

0<|x—al<59,

| f(z) - L|<e.



Example
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Example: Let f(z) = 2l = lin}) f (x) does not exist.
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Example

Example: Let f(z) = 2l = lin}) f (x) does not exist.
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If £ > 0and x — 0, then f(x) — 1.



Example
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Example: Let f(x) = 'i—' = lin}) f (x) does not exist.
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If £ > 0and x — 0, then f(x) — 1.
Ifz < 0and z — 0, then f(x) — —1.



One-sided Limits
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Definition: [Limit from Above]

We say that L is the limit of f(x) as « approaches a from above (or from the
right), if for every e > 0 there exists a § > 0 such thatifa < < a + §, then

| f(z) - LI<e

We write lim f(x) = L.
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One-sided Limits
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Definition: [Limit from Below]

We say that L is the limit of f(x) as « approaches a from below (or from the
left), if for every € > 0 there exists a § > 0 such thatifa — § < = < a, then

| f(z) - LI<e

We write lim  f(x) = L.
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One-sided Limits vs. Limits

Theorem

The following are equivalent:
1. lim f(x) = L.
rT—ra

2. Both lim f(«) and lim f(«) exist with
z—at Tz—a—

lim f(x) =L = wgrgl_ f(x).

z—at



One-sided Limits

f(z)

Assume that lim f(x) = L
Tr—ra

= lim f(x) = L,and
r—at

lim f(xz) = L.
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One-sided Limits
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Assume that lim f(x) =L = lim f(x)
z—at Tz—a~



One-sided Limits
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Assume that lim f(x) =L = lim f(xz) = lim f(x) = L.
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