Created by

Barbara Forrest and Brian Forrest

Formal Definition of a Limit

Recall: Formal Definition of a Limit

We say that L is the limit of f(x) as x approaches a if for every $\epsilon > 0$ there exists a $\delta > 0$ such that if

$$0 < \mid x - a \mid < \delta,$$

then

$$\mid f(x) - L \mid < \epsilon.$$

Example: Let $f(x) = \frac{|x|}{x}$. $\Rightarrow \lim_{x \to 0} f(x)$ does not exist.

If x > 0 and $x \to 0$, then $f(x) \to 1$.

If x > 0 and $x \to 0$, then $f(x) \to 1$.

If x < 0 and $x \to 0$, then $f(x) \to -1$.

Definition: [Limit from Above]

We say that L is the limit of f(x) as x approaches a from above (or from the right), if for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $a < x < a + \delta$, then

$$|f(x) - L| < \epsilon.$$

We write $\lim_{x \to a^+} f(x) = L$.

Definition: [Limit from Below]

We say that L is the limit of f(x) as x approaches a from below (or from the left), if for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $a - \delta < x < a$, then

$$\mid f(x) - L \mid < \epsilon.$$

We write $\lim_{x \to a^-} f(x) = L$.

Theorem

The following are equivalent:

- 1. $\lim_{x \to a} f(x) = L.$
- 2. Both $\lim_{x \to a^+} f(x)$ and $\lim_{x \to a^-} f(x)$ exist with

$$\lim_{x \to a^+} f(x) = L = \lim_{x \to a^-} f(x).$$

Assume that $\lim_{x \to a^+} f(x) = L = \lim_{x \to a^-} f(x)$

Assume that $\lim_{x \to a^+} f(x) = L = \lim_{x \to a^-} f(x) \Rightarrow \lim_{x \to a} f(x) = L.$