One-sided Limits

Created by
Barbara Forrest and Brian Forrest

Formal Definition of a Limit

Recall: Formal Definition of a Limit

We say that L is the limit of $f(x)$ as x approaches a if for every $\epsilon>0$ there exists a $\boldsymbol{\delta}>\boldsymbol{0}$ such that if

$$
0<|x-a|<\delta,
$$

then

$$
|f(x)-L|<\epsilon .
$$

Example

Example: Let $f(x)=\frac{|x|}{x} . \Rightarrow \lim _{x \rightarrow 0} f(x)$ does not exist.

Example

Example: Let $f(x)=\frac{|x|}{x} . \Rightarrow \lim _{x \rightarrow 0} f(x)$ does not exist.
If $x>0$ and $x \rightarrow 0$, then $f(x) \rightarrow 1$.

Example

Example: Let $f(x)=\frac{|x|}{x} . \Rightarrow \lim _{x \rightarrow 0} f(x)$ does not exist.
If $x>0$ and $x \rightarrow 0$, then $f(x) \rightarrow 1$.
If $x<0$ and $x \rightarrow 0$, then $f(x) \rightarrow-1$.

One-sided Limits

Definition: [Limit from Above]

We say that L is the limit of $f(x)$ as \boldsymbol{x} approaches \boldsymbol{a} from above (or from the right), if for every $\epsilon>0$ there exists a $\delta>0$ such that if $a<x<a+\delta$, then

$$
|f(x)-L|<\epsilon
$$

We write $\lim _{x \rightarrow a^{+}} f(x)=L$.

One-sided Limits

Definition: [Limit from Below]

We say that L is the limit of $\boldsymbol{f}(\boldsymbol{x})$ as \boldsymbol{x} approaches \boldsymbol{a} from below (or from the left), if for every $\epsilon>\boldsymbol{0}$ there exists a $\delta>0$ such that if $\boldsymbol{a}-\delta<\boldsymbol{x}<\boldsymbol{a}$, then

$$
|f(x)-L|<\epsilon
$$

We write $\lim _{x \rightarrow a^{-}} f(x)=L$.

Example

Example: We know that $\lim _{x \rightarrow 0} \frac{|x|}{x}$ does not exist. However,

$$
\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=1
$$

and

$$
\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=-1
$$

One-sided Limits vs. Limits

Theorem

The following are equivalent:

1. $\lim _{x \rightarrow a} f(x)=L$.
2. Both $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$ exist with

$$
\lim _{x \rightarrow a^{+}} f(x)=L=\lim _{x \rightarrow a^{-}} f(x)
$$

One-sided Limits

Assume that $\lim _{x \rightarrow a} f(x)=L$

$$
\begin{aligned}
\Rightarrow \quad \lim _{x \rightarrow a^{+}} f(x) & =L, \text { and } \\
\lim _{x \rightarrow a^{-}} f(x) & =L .
\end{aligned}
$$

One-sided Limits

Assume that $\lim _{x \rightarrow a^{+}} f(x)=L=\lim _{x \rightarrow a^{-}} f(x)$

One-sided Limits

Assume that $\lim _{x \rightarrow a^{+}} f(x)=L=\lim _{x \rightarrow a^{-}} f(x) \Rightarrow \lim _{x \rightarrow a} f(x)=L$.

