Limits of Functions: Part I

Created by

Barbara Forrest and Brian Forrest

What is a Limit?

Heuristic Definition:
We say that L is the limit of a function $f(x)$ as x approaches a if as x gets closer and closer to a, without ever reaching $a, f(x)$ gets closer and closer to L.

What is a Limit?

Heuristic Definition:
We say that L is the limit of a function $f(x)$ as x approaches a if as x gets closer and closer to a, without ever reaching $a, f(x)$ gets closer and closer to L.

What is a Limit?

Example: Consider the two functions $f(x)=\frac{x^{2}-1}{x-1}$ and $g(x)=x+1$. It might be tempting to use some algebra and write

$$
\begin{aligned}
f(x) & =\frac{x^{2}-1}{x-1} \\
& =\frac{(x+1)(x-1)}{x-1} \\
& =x+1 \\
& =g(x)
\end{aligned}
$$

Question: Does this mean that $f(x)$ and $g(x)$ are actually the same function?

Answer: Almost, but not quite. They have different domains since $f(x)$ is not defined at $x=1$!

What is a Limit?

Note: The graph of $g(x)=x+1$ is a straight line with slope 1 .
Question: What happens if we graph $f(x)=\frac{x^{2}-1}{x-1}$?
Answer: The graph of $f(x)$ is the same graph as $g(x)=x+1$, except there is a hole in the graph corresponding to where $x=1$.

What is a Limit?

We want to focus on the values of $f(x)=\frac{x^{2}-1}{x-1}$ when x is very close to but not equal to $\mathbf{1}$. The following is a table of some select values with \boldsymbol{x} near 1.

x	$f(x)$
0	1
0.1	1.1
0.5	1.5
0.75	1.75
0.9	1.9
0.99	1.99
0.999	1.999
0.99999	1.99999
0.99999999	1.99999999

x	$f(x)$
2	3
1.9	2.9
1.5	2.5
1.25	2.25
1.1	2.1
1.01	2.01
1.001	2.001
1.00001	2.00001
1.00000001	2.00000001

What is a Limit?

We can see that as x gets closer and closer to $1, f(x)$ gets closer and closer to 2.

We would like to say that 2 is the limit of $f(x)$ as x approaches 1 .

Formal Definition of a Limit

A more robust definition is required.

Improved Heuristic Definition:

L is the limit of $f(x)$ as x approaches a if for any positive tolerance $\epsilon>0$, we can ensure that $f(x)$ approximates L with error less than ϵ at any x, other than possibly at a itself, provided that x is close enough to a.

Definition: [Limit of a Function]

We say that L is the limit of $f(x)$ as x approaches a if for every $\epsilon>0$ there exists a $\delta>0$ such that if

$$
0<|x-a|<\delta
$$

then

$$
|f(x)-L|<\epsilon .
$$

We write

$$
\lim _{x \rightarrow a} f(x)=L .
$$

Formal Definition of a Limit

Formal Definition of a Limit

Formal Definition of a Limit

Remarks:

1. For $\lim _{x \rightarrow a} f(x)$ to exist, $f(x)$ must be defined on an open interval (α, β) containing $x=a$, except possibly at $x=a$.
2. The value of $f(a)$, if it is defined at all, does not affect the existence of the limit or its value.
3. If two functions are equal, except possibly at $x=a$, then their limiting behavior at a is the same.
