Limits of Functions: Part I

Created by

Barbara Forrest and Brian Forrest

Heuristic Definition:

We say that L is the limit of a function f(x) as x approaches a if as x gets closer and closer to a, without ever reaching a, f(x) gets closer and closer to L.

Heuristic Definition:

We say that L is the limit of a function f(x) as x approaches a if as x gets closer and closer to a, without ever reaching a, f(x) gets closer and closer to L.

Example: Consider the two functions $f(x) = \frac{x^2-1}{x-1}$ and g(x) = x+1. It might be tempting to use some algebra and write

$$f(x) = \frac{x^2 - 1}{x - 1} \\ = \frac{(x + 1)(x - 1)}{x - 1} \\ = x + 1 \\ = g(x)$$

Question: Does this mean that f(x) and g(x) are actually the same function?

Answer: Almost, but not quite. They have different domains since f(x) is not defined at x = 1!

Note: The graph of g(x) = x + 1 is a straight line with slope 1.

Question: What happens if we graph $f(x) = \frac{x^2 - 1}{x - 1}$?

Answer: The graph of f(x) is the same graph as g(x) = x + 1, except there is a *hole* in the graph corresponding to where x = 1.

We want to focus on the values of $f(x) = \frac{x^2-1}{x-1}$ when x is very close to but not equal to 1. The following is a table of some select values with x near 1.

x	f(x)		x	f(x)
0	1		2	3
0.1	1.1		1.9	2.9
0.5	1.5		1.5	2.5
0.75	1.75]	1.25	2.25
0.9	1.9	1	1.1	2.1
0.99	1.99	1	1.01	2.01
0.999	1.999]	1.001	2.001
0.99999	1.99999]	1.00001	2.00001
0.99999999	1.99999999]	1.0000001	2.0000001

We can see that as x gets closer and closer to 1, f(x) gets closer and closer to 2.

We would like to say that 2 is the limit of f(x) as x approaches 1.

Formal Definition of a Limit

A more robust definition is required.

Improved Heuristic Definition:

L is the limit of f(x) as *x* approaches *a* if for any positive tolerance $\epsilon > 0$, we can ensure that f(x) approximates *L* with error less than ϵ at any *x*, other than possibly at *a* itself, provided that *x* is close enough to *a*.

Definition: [Limit of a Function]

We say that *L* is the limit of f(x) as *x* approaches *a* if for every $\epsilon > 0$ there exists a $\delta > 0$ such that if

$$0 < \mid x - a \mid < \delta,$$

then

$$\mid f(x) - L \mid < \epsilon.$$

We write

 $\lim_{x \to a} f(x) = L.$

Formal Definition of a Limit

Formal Definition of a Limit

Remarks:

- 1. For $\lim_{x \to a} f(x)$ to exist, f(x) must be defined on an **open** interval (α, β) containing x = a, except possibly at x = a.
- 2. The value of f(a), if it is defined at all, does not affect the existence of the limit or its value.
- 3. If two functions are equal, except possibly at x = a, then their limiting behavior at a is the same.