The Intermediate Value Theorem

Created by

Barbara Forrest and Brian Forrest

Equator Problem:

Show that at any given time there will always be two diametrically opposite points on the equator with exactly the same temperature.

Equator Problem (continued)

Strategy:

Assume the equator is a circle and that each point can be identified by an angle θ in standard position with T(θ) the temperature at the point θ.

2) Let

$$H(\theta) = T(\theta + \pi) - T(\theta).$$

3) Find a point θ_0 with $H(\theta_0) = 0$.

Central Problem

Central Problem: Solve

- 1. f(x) = 0
- 2. $f(x) = \alpha$
- 3. f(x) = g(x)

Question: Does a solution exist? If so, how do you find it?

Central Problem

Observation:

- 1) Assume f(x) is continuous on [a, b] with $f(a) < \alpha < f(b)$.
- To get from below the line y = α to above the line y = α without creating a break, we must cross the line y = α at least once so there exists c ∈ (a, b) with f(c) = α.

Intermediate Value Theorem (IVT)

Theorem: [The Intermediate Value Theorem (IVT)]

Assume that f(x) is continuous on the closed interval [a, b], and either

$$f(a) < \alpha < f(b) \text{ or } f(a) > \alpha > f(b).$$

Then there exists a $c \in (a, b)$ such that $f(c) = \alpha$.

Intermediate Value Theorem (IVT)

Note: The IVT appears to be very obvious but the proof that it is true is actually quite complicated and is beyond the scope of this course.

Equator Problem

Recall: Equator Problem:

Show that at any given time there will always be two diametrically opposite points on the equator with exactly the same temperature.

Solution:

Observe $H(\theta) = T(\theta + \pi) - T(\theta)$ is continuous on $[0, \pi]$. We have

$$H(\pi) = T(\pi + \pi) - T(\pi)$$

= $T(2\pi) - T(\pi)$
= $T(0) - T(\pi)$
= $-H(0).$

Equator Problem

Three Cases:

- 1) If H(0) = 0 we are done.
- 2) If H(0) < 0, then $H(\pi) > 0$ so the IVT gives θ_0 with $H(\theta_0) = 0$.
- 3) If H(0) > 0, then $H(\pi) < 0$ so the IVT gives θ_0 with $H(\theta_0) = 0$.

Example

Example:

Show that there exists a $c \in (0,1)$ such that

 $\cos(c)=c,$

or equivalently that there exists a $c\in (0,1)$ with h(c)=0 where

 $h(x) = \cos(x) - x.$

Example (continued)

Solution: $h(x) = \cos(x) - x$ is continuous on the closed interval [0, 1] with $h(0) = \cos(0) = 0 = 1 > 0$

$$h(0) = \cos(0) - 0 = 1 > 0$$

and

$$h(1) = \cos(1) - 1 < 0.$$

By the IVT, we can conclude that there is a 0 < c < 1 such that h(c) = 0 or equivalently that $\cos(c) = c$.