The Intermediate Value Theorem

Created by

Barbara Forrest and Brian Forrest

Equator Problem

Equator Problem:

Show that at any given time there will always be two diametrically opposite points on the equator with exactly the same temperature.

Strategy:

1) Assume the equator is a circle and that each point can be identified by an angle θ in standard position with $T(\theta)$ the temperature at the point θ.
2) Let

$$
H(\theta)=T(\theta+\pi)-T(\theta)
$$

3) Find a point θ_{0} with
$H\left(\theta_{0}\right)=0$.

Central Problem

Central Problem: Solve

1. $f(x)=0$
2. $f(x)=\alpha$
3. $f(x)=g(x)$

Question: Does a solution exist? If so, how do you find it?

Central Problem

Observation:

1) Assume $f(x)$ is continuous on $[a, b]$ with $f(a)<\alpha<f(b)$.
2) To get from below the line $y=\alpha$ to above the line $y=\alpha$ without creating a break, we must cross the line $y=\alpha$ at least once so there exists $c \in(a, b)$ with $f(c)=\alpha$.

Intermediate Value Theorem (IVT)

Theorem: [The Intermediate Value Theorem (IVT)]
Assume that $f(x)$ is continuous on the closed interval $[a, b]$, and either

$$
f(a)<\alpha<f(b) \text { or } f(a)>\alpha>f(b)
$$

Then there exists a $c \in(a, b)$ such that $f(c)=\alpha$.

Intermediate Value Theorem (IVT)

Note: The IVT appears to be very obvious but the proof that it is true is actually quite complicated and is beyond the scope of this course.

Equator Problem

Recall:

Equator Problem:
Show that at any given time there will always be two diametrically opposite points on the equator with exactly the same temperature.

Solution:
Observe $H(\theta)=T(\theta+\pi)-T(\theta)$ is continuous on $[0, \pi]$. We have

$$
\begin{aligned}
H(\pi) & =T(\pi+\pi)-T(\pi) \\
& =T(2 \pi)-T(\pi) \\
& =T(0)-T(\pi) \\
& =-H(0)
\end{aligned}
$$

Three Cases:

1) If $H(0)=0$ we are done.
2) If $\boldsymbol{H}(0)<0$, then $\boldsymbol{H}(\pi)>0$ so the IVT gives θ_{0} with $\boldsymbol{H}\left(\theta_{0}\right)=0$.
3) If $\boldsymbol{H}(0)>0$, then $\boldsymbol{H}(\pi)<0$ so the IVT gives θ_{0} with $\boldsymbol{H}\left(\theta_{0}\right)=0$.

Example

Example:

Show that there exists a $c \in(0,1)$ such that

$$
\cos (c)=c
$$

or equivalently that there exists a $c \in(0,1)$ with $h(c)=0$ where

$$
h(x)=\cos (x)-x .
$$

Example (continued)

Solution: $h(x)=\cos (x)-x$ is continuous on the closed interval $[0,1]$ with

$$
h(0)=\cos (0)-0=1>0
$$

and

$$
h(1)=\cos (1)-1<0 .
$$

By the IVT, we can conclude that there is a $0<c<1$ such that $h(c)=0$ or equivalently that $\cos (c)=c$.

