Horizontal Asymptotes and Limits at Infinity

Created by

Barbara Forrest and Brian Forrest

Infinite Limits at ∞

Definition: [Infinite Limits at ∞]

We say that the limit of $f(x)$ as \boldsymbol{x} approaches ∞ is ∞ if for every $M>0$ there exists a cutoff $N>0$ such that if $\boldsymbol{x}>\boldsymbol{N}$, then

$$
f(x)>M
$$

We write

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

Note: We can define $\lim _{x \rightarrow \infty} f(x)=-\infty$ and $\lim _{x \rightarrow-\infty} f(x)= \pm \infty$ similarly.

Limits at ∞

Example: Evaluate

$$
\lim _{x \rightarrow \infty} \frac{3 x^{3}+x}{x^{2}+1}
$$

Following the same procedure as before, we have

$$
\begin{aligned}
\frac{3 x^{3}+x}{x^{2}+1} & =\frac{x^{3}\left(3+\frac{1}{x^{2}}\right)}{x^{2}\left(1+\frac{1}{x^{2}}\right)} \\
& =x \cdot\left(\frac{3+\frac{1}{x^{2}}}{1+\frac{1}{x^{2}}}\right) \\
& \cong 3 x .
\end{aligned}
$$

Hence

$$
\lim _{x \rightarrow \infty} \frac{3 x^{3}+x}{x^{2}+1}=\infty
$$

Note: Formally, this means that the limit does not exist.

Limits of the Form $\lim _{x \rightarrow \pm \infty} \frac{p(x)}{q(x)}$

Let

$$
f(x)=\frac{b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\cdots+b_{j} x^{j}}{c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{k} x^{k}}
$$

By factoring out x^{j} from the numerator and x^{k} from the denominator and rewriting the function as

$$
f(x)=\frac{x^{j}}{x^{k}}\left[\frac{\frac{b_{0}}{x^{j}}+\frac{b_{1}}{x^{j-1}}+\frac{b_{2}}{x^{j-2}}+\frac{b_{3}}{x^{j-3}}+\cdots+b_{j}}{\frac{c_{0}}{x^{k}}+\frac{c_{1}}{x^{k-1}}+\frac{c_{2}}{x^{k-2}}+\cdots+c_{k}}\right]
$$

This leads us to conclude that

$$
\lim _{x \rightarrow \pm \infty} \frac{p(x)}{q(x)}= \begin{cases}\frac{b_{j}}{c_{k}} & \text { if } j=k \\ 0 & \text { if } j<k \\ \pm \infty & \text { if } j>k\end{cases}
$$

where in the last case whether the limit is ∞ or $-\infty$ depends on the sign of $\frac{b_{j}}{c_{k}}$ and whether $\boldsymbol{x} \rightarrow \infty$ or $-\infty$, as well as whether or not $\boldsymbol{j}-\boldsymbol{k}$ is even or odd.

Squeeze Theorem for Limits at $\pm \infty$

Theorem: [Squeeze Theorem for Limits at $\pm \infty$]
Assume that $g(x) \leq f(x) \leq h(x)$ for all $x \geq N$. If

$$
\lim _{x \rightarrow \infty} g(x)=L=\lim _{x \rightarrow \infty} h(x)
$$

then $\lim _{x \rightarrow \infty} f(x)$ exists and it equals L.
Assume that $g(x) \leq f(x) \leq h(x)$ for all $x \leq N$. If

$$
\lim _{x \rightarrow-\infty} g(x)=L=\lim _{x \rightarrow-\infty} h(x)
$$

then $\lim _{x \rightarrow-\infty} f(x)$ exists and it equals L.

Limits of the form $\lim _{x \rightarrow \pm \infty} \frac{\sin (x)}{x}$

Example: Evaluate

$$
\lim _{x \rightarrow \infty} \frac{\sin (x)}{x}
$$

Solution: Since

$$
\begin{gathered}
|\sin (x)| \leq 1 \\
\text { for any } x>0, \text { we have }
\end{gathered}
$$

$$
-\frac{1}{x} \leq \frac{\sin (x)}{x} \leq \frac{1}{x}
$$

Now

$$
\lim _{x \rightarrow \infty}-\frac{1}{x}=0=\lim _{x \rightarrow \infty} \frac{1}{x}
$$

so the Squeeze Theorem implies that

$$
\lim _{x \rightarrow \infty} \frac{\sin (x)}{x}=0
$$

