Horizontal Asymptotes and Limits at Infinity

Created by

Barbara Forrest and Brian Forrest

Limits at ∞

Observation: As x approaches $-\infty$, $1 + x^2$ becomes very large and hence $f(x) = \frac{1}{1+x^2}$ gets very close to 0.

More precisely, given any positive tolerance $\epsilon > 0$, we can find a cutoff N_1 so that if $x < N_1$, then f(x) approximates 0 with an error less than ϵ .

We want to say that 0 is the *limit as* x approaches $-\infty$ of f(x).

Limits at ∞

Definition: [Limit at ∞]

We say that L is the limit of f(x) as x approaches ∞ if for every $\epsilon > 0$ there exists a cutoff N > 0 such that if x > N, then

$$\mid f(x) - L \mid < \epsilon.$$

We write $\lim_{x \to \infty} f(x) = L$.

Limits at ∞

Definition: [Limit at $-\infty$]

We say that L is the limit of f(x) as x approaches $-\infty$ if for every $\epsilon > 0$ there exists a cutoff N < 0 such that if x < N, then

$$\mid f(x) - L \mid < \epsilon.$$

We write $\lim_{x \to -\infty} f(x) = L$.

Definition: [Horizontal Asymptote]

We say that y = L is a horizontal asymptote for f(x) if one of $\lim_{x \to \infty} f(x) = L$ or $\lim_{x \to -\infty} f(x) = L$.

Note: All of the *Arithmetic Rules for Limits* hold for limits at $\pm \infty$.

Rational Functions

Example: Evaluate

$$\lim_{x\to\infty}\frac{2x^2-3x+4}{x^2+x-5}.$$

Observation: For polynomials and large values of x, the highest power terms dominate. Hence, for x is very large

$$rac{2x^2-3x+4}{x^2+x-5}\congrac{2x^2}{x^2}=2.$$

We might guess that

$$\lim_{x \to \infty} \frac{2x^2 - 3x + 4}{x^2 + x - 5} = 2.$$

Rational Functions

Example (continued): Evaluate

$$\lim_{x\to\infty}\frac{2x^2-3x+4}{x^2+x-5}$$

Solution: We have for all x > 0,

$$\frac{2x^2 - 3x + 4}{x^2 + x - 5} = \frac{x^2(2 - \frac{3}{x} + \frac{4}{x^2})}{x^2(1 + \frac{1}{x} - \frac{5}{x^2})} = \frac{2 - \frac{3}{x} + \frac{4}{x^2}}{1 + \frac{1}{x} - \frac{5}{x^2}}$$

Then

$$\lim_{x \to \infty} \frac{2x^2 - 3x + 4}{x^2 + x - 5} = \lim_{x \to \infty} \frac{2 - \frac{3}{x} + \frac{4}{x^2}}{1 + \frac{1}{x} - \frac{5}{x^2}}$$
$$= \frac{2 - 0 + 0}{1 + 0 - 0}$$
$$= 2.$$

Rational Functions

Example: Evaluate

$$\lim_{x \to -\infty} \frac{3x^3 + x}{x^4 + 1}$$

Solution: We have

$$\lim_{x \to -\infty} \frac{3x^3 + x}{x^4 + 1} = \lim_{x \to -\infty} \frac{x^3(3 + \frac{1}{x^2})}{x^4(1 + \frac{1}{x^4})}$$
$$= \lim_{x \to -\infty} \left(\frac{1}{x}\right) \left(\frac{3 + \frac{1}{x^2}}{1 + \frac{1}{x^4}}\right)$$
$$= 0 \cdot 3$$

Hence

$$\lim_{x \to -\infty} \frac{3x^3 + x}{x^4 + 1} = 0.$$