Horizontal Asymptotes and Limits at Infinity

Created by

Barbara Forrest and Brian Forrest

Limits at ∞

Observation: As x approaches $-\infty, 1+x^{2}$ becomes very large and hence $f(x)=\frac{1}{1+x^{2}}$ gets very close to 0 .
More precisely, given any positive tolerance $\epsilon>0$, we can find a cutoff N_{1} so that if $x<N_{1}$, then $f(x)$ approximates 0 with an error less than ϵ.

We want to say that 0 is the limit as x approaches $-\infty$ of $f(x)$.

Limits at ∞

Definition: [Limit at ∞]

We say that L is the limit of $f(x)$ as \boldsymbol{x} approaches ∞ if for every $\epsilon>0$ there exists a cutoff $\boldsymbol{N}>\mathbf{0}$ such that if $\boldsymbol{x}>\boldsymbol{N}$, then

$$
|f(x)-L|<\epsilon .
$$

We write $\lim _{x \rightarrow \infty} f(x)=L$.

Limits at ∞

Definition: [Limit at $-\infty$]
We say that L is the limit of $f(x)$ as x approaches $-\infty$ if for every $\epsilon>0$ there exists a cutoff $\boldsymbol{N}<\mathbf{0}$ such that if $x<\boldsymbol{N}$, then

$$
|f(x)-L|<\epsilon .
$$

We write $\lim _{x \rightarrow-\infty} f(x)=L$.

Horizontal Asymptotes

Definition: [Horizontal Asymptote]

We say that $y=L$ is a horizontal asymptote for $f(x)$ if one of $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$.

Note: All of the Arithmetic Rules for Limits hold for limits at $\pm \infty$.

Rational Functions

Example: Evaluate

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}-3 x+4}{x^{2}+x-5}
$$

Observation: For polynomials and large values of \boldsymbol{x}, the highest power terms dominate. Hence, for x is very large

$$
\frac{2 x^{2}-3 x+4}{x^{2}+x-5} \cong \frac{2 x^{2}}{x^{2}}=2
$$

We might guess that

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}-3 x+4}{x^{2}+x-5}=2
$$

Rational Functions

Example (continued): Evaluate

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}-3 x+4}{x^{2}+x-5}
$$

Solution: We have for all $\boldsymbol{x}>\mathbf{0}$,

$$
\begin{aligned}
\frac{2 x^{2}-3 x+4}{x^{2}+x-5} & =\frac{x^{2}\left(2-\frac{3}{x}+\frac{4}{x^{2}}\right)}{x^{2}\left(1+\frac{1}{x}-\frac{5}{x^{2}}\right)} \\
& =\frac{2-\frac{3}{x}+\frac{4}{x^{2}}}{1+\frac{1}{x}-\frac{5}{x^{2}}}
\end{aligned}
$$

Then

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 x^{2}-3 x+4}{x^{2}+x-5} & =\lim _{x \rightarrow \infty} \frac{2-\frac{3}{x}+\frac{4}{x^{2}}}{1+\frac{1}{x}-\frac{5}{x^{2}}} \\
& =\frac{2-0+0}{1+0-0} \\
& =2
\end{aligned}
$$

Rational Functions

Example: Evaluate

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{3}+x}{x^{4}+1}
$$

Solution: We have

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{3 x^{3}+x}{x^{4}+1} & =\lim _{x \rightarrow-\infty} \frac{x^{3}\left(3+\frac{1}{x^{2}}\right)}{x^{4}\left(1+\frac{1}{x^{4}}\right)} \\
& =\lim _{x \rightarrow-\infty}\left(\frac{1}{x}\right)\left(\frac{3+\frac{1}{x^{2}}}{1+\frac{1}{x^{4}}}\right) \\
& =0 \cdot 3
\end{aligned}
$$

Hence

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{3}+x}{x^{4}+1}=0
$$

