Horizontal Asymptotes and Limits at Infinity

Created by

Barbara Forrest and Brian Forrest



Limits at co

f(z) =

/ 1+w2
: €

/‘/ L=o0

G
~—

Observation: As = approaches —oo, 1 + x2 becomes very large and
hence f(x) = H_% gets very close to 0.

More precisely, given any positive tolerance e > 0, we can find a cutoff
Nj so that if @ < Ny, then f(x) approximates 0 with an error less than
€.

We want to say that 0 is the limit as « approaches —oo of f(x).



Limits at co
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Definition: [Limit at oc]

We say that L is the limit of f(x) as @ approaches occ if for every e > 0 there
exists a cutoff IN > 0 such that if x > IN, then

| f(z) - LI<e

We write lim f(x) = L.
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Limits at co
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Definition: [Limit at —oc]

We say that L is the limit of f(x) as @ approaches —oo if for every e > 0 there
exists a cutoff N < 0 such that if ¢ < IN, then

| f(z) - LI<e

We write. lim  f(x) = L.
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Horizontal Asymptotes

Definition: [Horizontal Asymptote]
We say that y = L is a horizontal asymptote for f(x) if one of
lim f(x) = Lor lim f(z)= L.
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Note: All of the Arithmetic Rules for Limits hold for limits at +-oo.



Rational Functions

Example: Evaluate
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Observation: For polynomials and large values of x, the highest power
terms dominate. Hence, for x is very large
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We might guess that
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Rational Functions

Example (continued): Evaluate
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Solution: We have for all z > 0,
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Rational Functions

Example: Evaluate
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Solution: We have
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