The Fundamental Log Limit

Created by

Barbara Forrest and Brian Forrest

Fundamental Log Limit

Important Observation:

Note that $\ln (x)$ grows much more slowly than x. For example,

$$
\ln (10000)=9.210340468
$$

This would lead us to guess that

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=0
$$

The Fundamental Log Limit

Theorem: [Fundamental Log Limit]

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=0
$$

Proof:
First note that for each
$u>0$, we have

$$
\ln (u)<u
$$

The Fundamental Log Limit

Proof (continued): If we let $u=x^{\frac{1}{2}}$ and $x \geq 1$, then

$$
0 \leq \frac{\ln (x)}{x}=\frac{2 \ln \left(x^{\frac{1}{2}}\right)}{x}=\frac{2}{x^{\frac{1}{2}}}\left(\frac{\ln \left(x^{\frac{1}{2}}\right)}{x^{\frac{1}{2}}}\right) \leq \frac{2}{x^{\frac{1}{2}}}
$$

Since

$$
\lim _{x \rightarrow \infty} 0=0=\lim _{x \rightarrow \infty} \frac{2}{x^{\frac{1}{2}}}
$$

the Squeeze Theorem shows that

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=0
$$

The Fundamental Log Limit

Question: The Fundamental Log Limit shows that $\ln (x)$ grows more slowly than x. What are the relative growth rates of $\ln (x)$ versus that of \sqrt{x} or $x^{\frac{1}{100}}$?

Note: We have

$$
\ln (10000)=9.210340468
$$

and

$$
100000^{\frac{1}{100}}=1.096478196 .
$$

Does $x^{\frac{1}{100}}$ grow more slowly than $\ln (x)$? In fact, we claim

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{\frac{1}{100}}}=0 .
$$

The Fundamental Log Limit

Example: If $\boldsymbol{p}>\boldsymbol{0}$, then

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{p}}=0
$$

To show this, write

$$
\frac{\ln (x)}{x^{p}}=\frac{\frac{1}{p} \ln \left(x^{p}\right)}{x^{p}} .
$$

Since p is a constant, it follows that

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{p}} & =\lim _{x \rightarrow \infty} \frac{\frac{1}{p} \ln \left(x^{p}\right)}{x^{p}} \\
& =\frac{1}{p} \cdot\left(\lim _{x \rightarrow \infty} \frac{\ln \left(x^{p}\right)}{x^{p}}\right) \\
& =\frac{1}{p} \cdot 0 \\
& =0
\end{aligned}
$$

The Fundamental Log Limit

Example: Evaluate

$$
\lim _{x \rightarrow \infty} \frac{\ln \left(x^{p}\right)}{x}
$$

Solution: This is a simple variant of the Fundamental Log Limit since

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln \left(x^{p}\right)}{x} & =\lim _{x \rightarrow \infty} \frac{p \ln (x)}{x} \\
& =p \cdot\left(\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}\right) \\
& =0
\end{aligned}
$$

The Fundamental Log Limit

Example: Evaluate

$$
\lim _{x \rightarrow \infty} \frac{\ln \left(x^{40}\right)}{x^{\frac{1}{1000}}}
$$

Solution: We know that

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln \left(x^{40}\right)}{x^{\frac{1}{1000}}} & =\lim _{x \rightarrow \infty} \frac{40 \ln (x)}{x^{\frac{1}{1000}}} \\
& =40 \cdot\left(\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{\frac{1}{1000}}}\right) \\
& =0
\end{aligned}
$$

Note: If $f(x)=\frac{\ln \left(x^{40}\right)}{x \frac{1}{1000}}$, then

$$
f(1000000)=545.0381916
$$

The Fundamental Log Limit

Example: Let $\boldsymbol{p}>0$. Evaluate

$$
\lim _{x \rightarrow \infty} \frac{x^{p}}{e^{x}}
$$

Solution: Let $u=e^{x}$. Then $x=\ln (u)$ and

$$
\frac{x^{p}}{e^{x}}=\frac{(\ln (u))^{p}}{u}=\left(\frac{\ln (u)}{u^{\frac{1}{p}}}\right)^{p} .
$$

Note that if $x \rightarrow \infty$, then $u=e^{x} \rightarrow \infty$ and we get

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{p}}{e^{x}} & =\lim _{u \rightarrow \infty}\left(\frac{\ln (u)}{u^{\frac{1}{p}}}\right)^{p} \\
& =\left(\lim _{u \rightarrow \infty} \frac{\ln (u)}{u^{\frac{1}{p}}}\right)^{p} \\
& =0^{p} \\
& =0
\end{aligned}
$$

The Fundamental Log Limit

Notation: Assume that $f(x)$ and $g(x)$ are positive functions. We write

$$
f(x) \ll g(x) \quad \text { as } x \rightarrow \infty
$$

if

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0
$$

Summary:

$$
\ln (x) \ll x^{p} \ll e^{x}
$$

as $x \rightarrow \infty$.

