Created by

Barbara Forrest and Brian Forrest

Important Observation:

Note that $\ln(x)$ grows much more slowly than x. For example,

$\ln(10000) = 9.210340468.$

This would lead us to guess that

$$\lim_{x \to \infty} \frac{\ln(x)}{x} = 0.$$

Theorem: [Fundamental Log Limit]

$$\lim_{x \to \infty} \frac{\ln(x)}{x} = 0$$

Proof:

First note that for each u > 0, we have

$$\ln(u) < u.$$

$$\lim_{x \to \infty} \frac{\ln(x)}{x} = 0.$$

Question: The Fundamental Log Limit shows that $\ln(x)$ grows more slowly than x. What are the relative growth rates of $\ln(x)$ versus that of \sqrt{x} or $x^{\frac{1}{100}}$?

Note: We have

 $\ln(10000) = 9.210340468$

and

 $10000^{\frac{1}{100}} = 1.096478196.$

Does $x^{\frac{1}{100}}$ grow more slowly than $\ln(x)$? In fact, we claim

 $\lim_{x\to\infty}\frac{\ln(x)}{x^{\frac{1}{100}}}=0.$

Example: If p > 0, then

$$\lim_{x \to \infty} \frac{\ln(x)}{x^p} = 0$$

To show this, write

$$\frac{\ln(x)}{x^p} = \frac{\frac{1}{p}\ln(x^p)}{x^p}.$$

Since p is a constant, it follows that

$$\lim_{x \to \infty} \frac{\ln(x)}{x^p} = \lim_{x \to \infty} \frac{\frac{1}{p} \ln(x^p)}{x^p}$$
$$= \frac{1}{p} \cdot \left(\lim_{x \to \infty} \frac{\ln(x^p)}{x^p}\right)$$
$$= \frac{1}{p} \cdot 0$$
$$= 0$$

Example: Evaluate

 $\lim_{x \to \infty} \frac{\ln(x^p)}{x}.$

Solution: This is a simple variant of the Fundamental Log Limit since

$$\lim_{x \to \infty} \frac{\ln(x^p)}{x} = \lim_{x \to \infty} \frac{p \ln(x)}{x}$$
$$= p \cdot \left(\lim_{x \to \infty} \frac{\ln(x)}{x}\right)$$
$$= 0$$

Example: Let p > 0. Evaluate

$$\lim_{x \to \infty} \frac{x^p}{e^x}$$

Solution: Let $u = e^x$. Then $x = \ln(u)$ and

$$rac{x^p}{e^x} = rac{(\ln(u))^p}{u} = \left(rac{\ln(u)}{u^{rac{1}{p}}}
ight)^p$$

Note that if $x \to \infty,$ then $u = e^x \to \infty$ and we get

$$\lim_{x \to \infty} \frac{x^p}{e^x} = \lim_{u \to \infty} \left(\frac{\ln(u)}{u^{\frac{1}{p}}} \right)^p$$
$$= \left(\lim_{u \to \infty} \frac{\ln(u)}{u^{\frac{1}{p}}} \right)^p$$
$$= 0^p$$
$$= 0.$$

Notation: Assume that f(x) and g(x) are positive functions. We write

 $f(x) \ll g(x) \quad ext{as } x o \infty$ $\lim_{x o \infty} rac{f(x)}{g(x)} = 0.$

Summary:

if

 $\ln(x) \ll x^p \ll e^x$

as $x \to \infty$.