The Extreme Value Theorem

Created by

Barbara Forrest and Brian Forrest

Global Extrema

Goal: Many important applications of mathematics require you to find the largest or smallest value of a function over a given set.

Definition: [Global Maxima and Global Minima]

Suppose that $f: I \rightarrow \mathbb{R}$, where I is a non-degenerate interval.

- We say that c is a global maximum for $f(x)$ on I if $c \in I$ and $f(x) \leq f(c)$, for all $x \in I$.
- We say that c is a global minimum for $f(x)$ on I if $c \in I$ and $f(x) \geq f(c)$, for all $x \in I$.
- We say that \boldsymbol{c} is an global extremum for $f(x)$ on I if it is either a global maximum or a global minimum for $f(x)$ on I.

Global Extrema

Question:

Given a function $f(x)$ defined on a non-degenerate interval I, do there exist points $c_{1}, c_{2} \in I$ such that $f\left(c_{1}\right) \leq f(x) \leq f\left(c_{2}\right)$ for all $x \in I$?

That is, does $f(x)$ achieve both a global maximum and global minimum on I ?

Example

Example:

Let $f(x)=x$. Since the open interval $(0,1)$ has no largest or smallest value, $f(x)$ has no global maximum or global minimum on $(0,1)$.

Key Observation: This function seems to want to have a maximum and a minimum at the end points $x=0$ and $x=1$ of the open interval $(0,1)$.

Example

Example:

Let $f(x)=1-x^{2}$ on the open interval $(-1,1)$. Then $f(x)$ has no global minimum on $(-1,1)$, but $f(x)$ does have a global maximum on the interval $(-1,1)$ at $x=0$.

Observation: Again, this function does seem to want to achieve it's minimum at the missing end points of the open interval $(-1,1)$.

Extreme Value Theorem

Theorem: [The Extreme Value Theorem (EVT)]

Suppose that $f(x)$ is continuous on $[a, b]$. There exists c_{1} and $c_{2} \in[a, b]$ such that

$$
f\left(c_{1}\right) \leq f(x) \leq f\left(c_{2}\right)
$$

for all $x \in[a, b]$.

Question: Is continuity important?

Example

Example:

Let
$f(x)= \begin{cases}\frac{1}{x} & \text { if } 0<x \leq 1 \\ 5 & \text { if } x=0\end{cases}$

Then $f(x)$ has a global minimum on $[0,1]$ at $x=1$, but it has no global maximum on $[0,1]$.

Note: This example does not contradict the EVT because $f(x)$ is not continuous on $[\mathbf{0}, \mathbf{1}]$.

Extreme Value Theorem

Observation: The EVT ensures that a continuous function $f(x)$ defined on a closed interval $[a, b]$ achieves its global maximum and minimum on $[a, b]$, but it does not tell us how to find these values.

Important Fact: Assume that $f(x)$ has either a global maximum or global minimum at $c \in[a, b]$. Then either

1) c is an end point of the interval $[a, b] \Rightarrow c=a$ or $c=b$
or
2) c is not an end point of the interval $[a, b] \Rightarrow c \in(a, b)$.

Example

Example:

The function $f(x)=\sin (x)$ assumes its maximum and minimum values on $[-\pi, \pi]$ at $x=\frac{\pi}{2}$ and $x=-\frac{\pi}{2}$, respectively.

Extreme Value Theorem

Important Fact:

Continuous functions can behave very differently on closed intervals than they do on open intervals.

