## **The Extreme Value Theorem**

Created by

Barbara Forrest and Brian Forrest

**Goal:** Many important applications of mathematics require you to find the largest or smallest value of a function over a given set.

### Definition: [Global Maxima and Global Minima]

Suppose that  $f: I \to \mathbb{R}$ , where I is a non-degenerate interval.

- We say that c is a global maximum for f(x) on I if  $c \in I$  and  $f(x) \leq f(c)$ , for all  $x \in I$ .
- We say that c is a global minimum for f(x) on I if  $c \in I$  and  $f(x) \ge f(c)$ , for all  $x \in I$ .
- We say that c is an global extremum for f(x) on I if it is either a global maximum or a global minimum for f(x) on I.

### **Question:**

Given a function f(x) defined on a non-degenerate interval I, do there exist points  $c_1, c_2 \in I$  such that  $f(c_1) \leq f(x) \leq f(c_2)$  for all  $x \in I$ ?

That is, does f(x) achieve both a global maximum and global minimum on I?

# Example



#### **Example:**

Let f(x) = x. Since the open interval (0, 1) has no largest or smallest value, f(x) has no global maximum or global minimum on (0, 1).

**Key Observation:** This function seems to want to have a maximum and a minimum at the end points x = 0 and x = 1 of the open interval (0, 1).



### Example:

Let  $f(x) = 1 - x^2$  on the open interval (-1, 1). Then f(x) has no global minimum on (-1, 1), but f(x) does have a global maximum on the interval (-1, 1) at x = 0.

**Observation:** Again, this function does seem to want to achieve it's minimum at the missing end points of the open interval (-1, 1).

### Theorem: [The Extreme Value Theorem (EVT)]

Suppose that f(x) is continuous on [a, b]. There exists  $c_1$  and  $c_2 \in [a, b]$  such that

 $f(c_1) \leq f(x) \leq f(c_2)$ 

for all  $x \in [a, b]$ .

Question: Is continuity important?

# Example



Note: This example does not contradict the EVT because f(x) is not continuous on [0, 1].

**Observation:** The EVT ensures that a continuous function f(x) defined on a closed interval [a, b] achieves its global maximum and minimum on [a, b], but it does not tell us how to find these values.

**Important Fact:** Assume that f(x) has either a global maximum or global minimum at  $c \in [a, b]$ . Then either

1) c is an end point of the interval  $[a,b] \Rightarrow c = a$  or c = b

or

2) c is **not** an end point of the interval  $[a, b] \Rightarrow c \in (a, b)$ .



#### **Example:**

The function  $f(x) = \sin(x)$  assumes its maximum and minimum values on  $[-\pi, \pi]$  at  $x = \frac{\pi}{2}$  and  $x = -\frac{\pi}{2}$ , respectively.

#### **Important Fact:**

Continuous functions can behave very differently on closed intervals than they do on open intervals.