Types of Discontinuities

Created by

Barbara Forrest and Brian Forrest

Continuity

Definition: [Continuity at a Point]

We say that $f(x)$ is continuous at $x=a$ if

1) $\lim _{x \rightarrow a} f(x)$ exists, and
2) $\lim _{x \rightarrow a} f(x)=f(a)$.

Notation: $D(f)=\left\{x_{0} \mid f(x)\right.$ is not continuous at $\left.x_{0}\right\}$.
Observation: We have $x_{0} \in D(f)$ if

1. $\lim _{x \rightarrow a} f(x)$ exists but is not $f(a)$, or
2. $\lim _{x \rightarrow a} f(x)$ does not exist.

Removable Discontinuity

Definition: [Removable Discontinuity]

We say that $f(x)$ has a removable discontinuity at $x=a$ if $\lim _{x \rightarrow a} f(x)$ exists but is not $f(a)$.

Define

$$
g(x)= \begin{cases}f(x) & \text { if } x \neq a \\ \lim _{x \rightarrow a} f(x) & \text { if } x=a\end{cases}
$$

Then $g(x)$ removes the discontinuity of $f(x)$ at $x=a$.

Essential Discontinuity

Definition: [Essential Discontinuity]

We say that $f(x)$ has an essential discontinuity at $x=a$ if $\lim _{x \rightarrow a} f(x)$ does not exist.

Note: The discontinuity is called essential because there is no way to eliminate it by redefining the value of $f(x)$ at $x=a$.

There are three basic types of essential discontinuities:

1. Jump discontinuities.
2. Vertical asymptotes.
3. Oscillatory discontinuities.

Jump Discontinuity

Definition: [Jump Discontinuity]

We say that $f(x)$ has a jump discontinuity at $x=a$ if $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ exist but are not equal.

Jump Discontinuity

Definition: [Jump Discontinuity]

We say that $f(x)$ has a jump discontinuity at $x=a$ if $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ exist but are not equal.

Examples:

$$
\text { 1. } f(x)=\frac{|x|}{x} \text { at } x=0 \text {. }
$$

Jump Discontinuity

Definition: [Jump Discontinuity]

We say that $f(x)$ has a jump discontinuity at $x=a$ if $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ exist but are not equal.

Examples:

Vertical Asymptote

Definition: [Vertical Asymptote]

We say that $f(x)$ has a vertical asymptote at $x=a$ if at least one of $\lim _{x \rightarrow a^{ \pm}} f(x)= \pm \infty$ holds.

Example:

$$
f(x)=\frac{1}{x} \text { at } x=0 .
$$

Note: This is sometimes called an infinite jump discontinuity.

Oscillatory Discontinuities

Example: $f(x)=\sin \left(\frac{1}{x}\right)$ has an oscillatory discontinuity at $x=0$.

