Types of Discontinuities

Created by

Barbara Forrest and Brian Forrest

Continuity

Definition: [Continuity at a Point]

We say that f(x) is continuous at x = a if

- 1) $\lim_{x \to a} f(x)$ exists, and
- 2) $\lim_{x \to a} f(x) = f(a).$

Notation: $D(f) = \{x_0 \mid f(x) \text{ is not continuous at } x_0\}.$

Observation: We have $x_0 \in D(f)$ if

- 1. $\lim_{x \to a} f(x)$ exists but is not f(a), or
- 2. $\lim_{x \to a} f(x)$ does not exist.

Removable Discontinuity

Definition: [Removable Discontinuity]

We say that f(x) has a *removable discontinuity* at x = a if $\lim_{x \to a} f(x)$ exists but is not f(a).

Define

$$g(x) = egin{cases} f(x) & ext{if } x
eq a, \ \lim_{x
ightarrow a} f(x) & ext{if } x = a. \end{cases}$$

Then g(x) removes the discontinuity of f(x) at x = a.

Definition: [Essential Discontinuity]

We say that f(x) has an *essential discontinuity* at x = a if $\lim_{x \to a} f(x)$ does not exist.

Note: The discontinuity is called essential because there is no way to eliminate it by redefining the value of f(x) at x = a.

There are three basic types of essential discontinuities:

- 1. Jump discontinuities.
- 2. Vertical asymptotes.
- 3. Oscillatory discontinuities.

Jump Discontinuity

Definition: [Jump Discontinuity]

We say that f(x) has a *jump discontinuity* at x = a if $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$ exist but are not equal.

Jump Discontinuity

Definition: [Jump Discontinuity]

We say that f(x) has a *jump discontinuity* at x = a if $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$ exist but are not equal.

Jump Discontinuity

Definition: [Jump Discontinuity]

We say that f(x) has a *jump discontinuity* at x = a if $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$ exist but are not equal.

Vertical Asymptote

Definition: [Vertical Asymptote]

We say that f(x) has a *vertical asymptote* at x = a if at least one of $\lim_{x \to a^{\pm}} f(x) = \pm \infty$ holds.

Note: This is sometimes called an infinite jump discontinuity.

Oscillatory Discontinuities

Example: $f(x) = \sin(\frac{1}{x})$ has an oscillatory discontinuity at x = 0.