Curve Sketching Part I

Created by
Barbara Forrest and Brian Forrest

Curve Sketching

Goal:

To use information about limits and continuity to sketch the graphs of various functions.

Strategy: Basic Curve Sketching

Step 1: Determine the domain of $f(x)$.
Step 2: Determine any symmetries that the graph may have. In particular, test to see if the function is either even or odd.
Step 3: Determine, if possible, where the function changes sign and plot these points.
Step 4: Find any discontinuity points for $f(x)$.
Step 5: Evaluate the relevant one-sided and two-sided limits at the points of discontinuity and identify the nature of the discontinuities. In particular, indicate any removable discontinuity with a small circle to denote the hole.
Step 6: Using the information from step (5), draw any vertical asymptotes.
Step 7: Find any horizontal asymptotes by evaluating the limits of the function at $\pm \infty$, if applicable. Draw the horizontal asymptotes on your plot.
Step 8: Finally, use the information you have gathered above to construct as accurate a sketch as possible for the graph of the given function. It is often helpful to plot a few sample points as a guide.

Example: Basic Curve Sketching

Example: Sketch the graph of

$$
\frac{x e^{x}}{x^{3}-x}
$$

Solution:

Step 1: This function is defined everywhere except when the denominator is zero:

$$
x^{3}-x=x(x-1)(x+1)=0 .
$$

That is, everywhere except when $x=0$ and $x= \pm 1$.
Step 2: Since

$$
f(-x)=\frac{-x e^{-x}}{-x^{3}+x} \neq f(x) \text { and } f(-x)=\frac{x e^{-x}}{x^{3}-x} \neq-f(x)
$$

$f(x)$ is neither even nor odd. In fact, there are no obvious symmetries.

Example: Basic Curve Sketching

Solution (continued):

Step 3: We first observe that

$$
f(x)=\frac{x e^{x}}{x^{3}-x}=\frac{e^{x}}{x^{2}-1}
$$

for all $x \neq 0$. Since e^{x} is never 0 , the function is never 0 .
The IVT tells us that we could only have a sign change at a point of discontinuity.

Example: Basic Curve Sketching

Solution (continued):

Step 4:

$$
f(x)=\frac{x e^{x}}{x^{3}-x}
$$

The function is the ratio of two continuous functions. Therefore, $f(x)$ is discontinuous only at $x=0, x=-1$ and $x=1$ since these are the only points where the denominator is 0 .

Example: Basic Curve Sketching

Solution (continued):

Step 5:

1) e^{x} is always positive and since $f(x)=\frac{x e^{x}}{x^{3}-x}=\frac{e^{x}}{x^{2}-1}$ for all $x \neq 0$, there is no sign change at $x=0$.
2) $f(x)$ goes from positive to negative as we move across $x=-1$ and then from negative to positive as we cross $x=1$ (moving left to right).

Example: Basic Curve Sketching

Solution (continued):
Step 5 (continued):
3) Since for $x \neq 0$, we have

$$
f(x)=\frac{x e^{x}}{x^{3}-x}=\frac{e^{x}}{x^{2}-1}
$$

this gives us that

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{e^{x}}{x^{2}-1}=-1
$$

So $x=\mathbf{0}$ is a removable discontinuity.

Example: Basic Curve Sketching

Solution (continued):
Step 5 (continued):
4) $x=1$ and $x=-1$ are both vertical asymptotes for $f(x)$.
5) Since $f(x)>0$ if $x>1$ or $x<-1$, and $f(x)<0$ if $x \neq 0$ and $-1<x<1$, we get that

$$
\begin{gathered}
\lim _{x \rightarrow 1^{+}} f(x)=\infty \\
\lim _{x \rightarrow 1^{-}} f(x)=-\infty
\end{gathered}
$$

and

$$
\begin{array}{r}
\lim _{x \rightarrow-1^{+}} f(x)=-\infty \\
\lim _{x \rightarrow-1^{-}} f(x)=\infty
\end{array}
$$

Example: Basic Curve Sketching

Solution (continued):
Step 6: Draw the vertical asymptotes and indicate the removable discontinuities on the plot.

Example: Basic Curve Sketching

Solution (continued):
Step 7:

$$
f(x)=\frac{x e^{x}}{x^{3}-x}
$$

1) Since e^{x} grows much more rapidly than any polynomial for large positive values of x, we have

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

2) But since e^{x} becomes very small for large negative values of x, we have

$$
\lim _{x \rightarrow-\infty} f(x)=0
$$

Thus, $y=0$ is a horizontal asymptote as $x \rightarrow-\infty$.

Example: Basic Curve Sketching

Solution (continued):
Step 8: Sketch the graph using all of this information.

