Continuity

Created by

Barbara Forrest and Brian Forrest

Definition of Continuity

Definition: [Continuity]

We say that $f(x)$ is continuous at $x=a$ if

1) $\lim _{x \rightarrow a} f(x)$ exists.
2) $\lim _{x \rightarrow a} f(x)=f(a)$.

Otherwise, we say that $f(x)$ is discontinuous at \boldsymbol{a} or that \boldsymbol{a} is a point of discontinuity for $f(x)$.

Definition of Continuity

Definition: [Continuity]

We say that $f(x)$ is continuous at $x=a$ if

1) $\lim _{x \rightarrow a} f(x)$ exists.
2) $\lim _{x \rightarrow a} f(x)=f(a)$.

Otherwise, we say that $f(x)$ is discontinuous at \boldsymbol{a} or that \boldsymbol{a} is a point of discontinuity for $f(x)$.

Note: 2) $\Rightarrow 1$).

Definition of Continuity

Observe: The following are equivalent:

1) $\lim _{x \rightarrow a} f(x)=f(a)$.
2) For every $\epsilon>0$, there exists a $\delta>0$ such that

$$
0<|x-a|<\delta \Rightarrow|f(x)-f(a)|<\epsilon .
$$

3) For every $\epsilon>0$, there exists a $\delta>0$ such that $|x-a|<\delta \Rightarrow|f(x)-f(a)|<\epsilon$.

Alternate Definition: [Continuity]

We say that $f(x)$ is continuous at $x=a$ if for every $\epsilon>0$, there exists a $\delta>0$ such that if $|x-a|<\delta$, then

$$
|f(x)-f(a)|<\epsilon
$$

Definition of Continuity

Definition of Continuity

Sequential Characterization of Continuity

Recall: The following are equivalent:

1) $\lim _{x \rightarrow a} f(x)=L$.
2) If $\left\{x_{n}\right\}$ is a sequence with $x_{n} \rightarrow a$ and $x_{n} \neq a$, then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

Theorem: [Sequential Characterization of Continuity]

The following are equivalent:

1) $f(x)$ is continuous at $x=a$.
2) If $\left\{x_{n}\right\}$ is a sequence with $x_{n} \rightarrow a$, then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$.
