Continuity

Created by

Barbara Forrest and Brian Forrest

Definition: [Continuity]

We say that f(x) is continuous at x = a if

- 1) $\lim_{x \to a} f(x)$ exists.
- 2) $\lim_{x \to a} f(x) = f(a).$

Otherwise, we say that f(x) is discontinuous at a or that a is a point of discontinuity for f(x).

Definition: [Continuity]

We say that f(x) is continuous at x = a if

- 1) $\lim_{x \to a} f(x)$ exists.
- 2) $\lim_{x \to a} f(x) = f(a).$

Otherwise, we say that f(x) is discontinuous at a or that a is a point of discontinuity for f(x).

Note: 2) \Rightarrow 1).

Observe: The following are equivalent:

1)
$$\lim_{x \to a} f(x) = f(a).$$

- 2) For every $\epsilon > 0$, there exists a $\delta > 0$ such that $0 < |x a| < \delta \Rightarrow |f(x) f(a)| < \epsilon$.
- 3) For every $\epsilon > 0$, there exists a $\delta > 0$ such that $|x a| < \delta \Rightarrow |f(x) f(a)| < \epsilon$.

Alternate Definition: [Continuity]

We say that f(x) is continuous at x = a if for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $|x - a| < \delta$, then

 $\mid f(x) - f(a) \mid < \epsilon.$

Sequential Characterization of Continuity

Recall: The following are equivalent:

- 1) $\lim_{x \to a} f(x) = L.$
- 2) If $\{x_n\}$ is a sequence with $x_n \to a$ and $x_n \neq a$, then $\lim_{n \to \infty} f(x_n) = L.$

Theorem: [Sequential Characterization of Continuity]

The following are equivalent:

1) f(x) is continuous at x = a.

2) If
$$\{x_n\}$$
 is a sequence with $x_n \to a$, then $\lim_{n \to \infty} f(x_n) = f(a)$.