Continuity on an Interval

Created by

Barbara Forrest and Brian Forrest

Continuity on an Open Interval

Definition: [Continuity on an Open Interval]

We say that f(x) is continuous on the open interval I if it is continuous at every $a \in I$.

Problem: How does this work for closed intervals?

ls $f(x) = \sqrt{x}$ continuous at 0? Answer: $\lim_{x \to 0} \sqrt{x}$ does not exist.

One-sided Continuity

Definition: [One-sided Continuity]

We say that f(x) is continuous from the left at x = a if

$$\lim_{x \to a^-} f(x) = f(a).$$

We say that f(x) is continuous from the right at x = a if

$$\lim_{x \to a^+} f(x) = f(a).$$

Example: $f(x) = \sqrt{x}$ is continuous from the right at 0.

Definition: [Continuity on a Closed interval]

We say that f(x) is continuous on the closed interval [a, b] if:

1) It is continuous on (a, b). That is f(x) is continuous at every $x \in (a, b)$ in the usual sense.

2)
$$\lim_{x \to a^+} f(x) = f(a).$$

3) $\lim_{x \to b^{-}} f(x) = f(b).$

Continuity on a Closed Interval

We have that

$$f(-1) = \lim_{x \to -1^+} \sqrt{1 - x^2} = 0 = \lim_{x \to 1^-} \sqrt{1 - x^2} = f(1)$$

so f(x) is continuous on [-1, 1].

Observation: The following are equivalent:

- 1) f(x) is continuous an interval I.
- 2) If $\{x_n\}$ is a sequence in I with $x_n \to x_0 \in I$, then

 $f(x_n) \to f(x_0).$