Continuity on an Interval

Created by

Barbara Forrest and Brian Forrest

Continuity on an Open Interval

Definition: [Continuity on an Open Interval]

We say that $f(x)$ is continuous on the open interval I if it is continuous at every $a \in I$.

Problem: How does this work for closed intervals?

Is $f(x)=\sqrt{x}$ continuous at 0 ?
Answer: $\lim _{x \rightarrow 0} \sqrt{x}$ does not exist.

One-sided Continuity

Definition: [One-sided Continuity]

We say that $f(x)$ is continuous from the left at $x=a$ if

$$
\lim _{x \rightarrow a^{-}} f(x)=f(a) .
$$

We say that $f(x)$ is continuous from the right at $x=a$ if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) .
$$

Example: $f(x)=\sqrt{x}$ is continuous from the right at 0 .

Continuity on a Closed Interval

Definition: [Continuity on a Closed interval]

We say that $f(x)$ is continuous on the closed interval $[a, b]$ if:

1) It is continuous on (a, b). That is $f(x)$ is continuous at every $x \in(a, b)$ in the usual sense.
2) $\lim _{x \rightarrow a^{+}} f(x)=f(a)$.
3) $\lim _{x \rightarrow b^{-}} f(x)=f(b)$.

Continuity on a Closed Interval

Example: Let $f(x)=\sqrt{1-x^{2}}$.
We have that

$$
f(-1)=\lim _{x \rightarrow-1^{+}} \sqrt{1-x^{2}}=0=\lim _{x \rightarrow 1^{-}} \sqrt{1-x^{2}}=f(1)
$$

so $f(x)$ is continuous on $[-1,1]$.

Continuity on an Interval

Observation: The following are equivalent:

1) $f(x)$ is continuous an interval I.
2) If $\left\{x_{n}\right\}$ is a sequence in I with $x_{n} \rightarrow x_{0} \in I$, then

$$
f\left(x_{n}\right) \rightarrow f\left(x_{0}\right) .
$$

