The Bisection Algorithm for Approximating Zeros

Created by

Barbara Forrest and Brian Forrest

Central Problem

Central Problem: Solve $f(x)=0$.
Question: Does a solution exist? If so, how do you find it?

The Intermediate Value Theorem

Theorem: [Intermediate Value Theorem (IVT)]
Assume that $f(x)$ is continuous on $[a, b]$ and that $f(a) \cdot f(b)<0$. Then there exists $c \in(a, b)$ such that

$$
f(c)=0
$$

Note: We have $f(a) \cdot f(b)<0$ if and only if $f(a)<0<f(b)$ or $f(b)<0<f(a)$.

Question: How can we estimate c within a given error?

The Strategy

Use $d=\frac{a+b}{2}$ as an estimate. \Rightarrow Error $=|d-c|<\frac{b-a}{2}$.

The Strategy

Can we do better?

The Strategy

Can we do better?

The Strategy

Can we do better?

The Strategy

Can we do better?

The Strategy

Can we do better?

Bisection Algorithm for Approximating Zeros

Problem: Given a continuous function $f(x)$ and an $\epsilon>0$, find an approximation d to a solution $x=c$ for the equation

$$
f(x)=0
$$

such that

$$
|d-c|<\epsilon
$$

Bisection Algorithm for Approximating Zeros:
Step 1: Find a, b so that $f(a) \cdot f(b)<0$.
Step 2: Let $d=\frac{a+b}{2}$.
Step 3: If $f(d)=0$ then stop, else go to Step 4.
Step 4: If $\frac{b-a}{2}<\epsilon$ then stop, else go to Step 5 .
Step 5: If $f(a) \cdot f(d)<0$ then $b=d$ and go to Step 2, else go to Step 6.

Step 6: $a=d$ and go to Step 2.

Example

Problem: Estimate c so that $\cos (c)=c \Leftrightarrow \cos (c)-c=0$ with an error less than $\frac{1}{2^{25}}$.

Example

Problem: Estimate c so that $\cos (c)=c \Leftrightarrow \cos (c)-c=0$ with an error less than $\frac{1}{2^{25}}$.

Example

Problem: Estimate c so that $\cos (c)=c \Leftrightarrow \cos (c)-c=0$ with an error less than $\frac{1}{2^{25}}$.

Example

Problem: Estimate c so that $\cos (c)=c \Leftrightarrow \cos (c)-c=0$ with an error less than $\frac{1}{2^{25}}$.

Start with $a=0$ and $b=1$

Example

Problem: Estimate c so that $\cos (c)=c \Leftrightarrow \cos (c)-c=0$ with an error less than $\frac{1}{2^{25}}$.

Start with $a=0$ and $b=1 \Rightarrow d=0.5$.

Example

Example

Example

Example

Example

Example

Solution: After 25 steps we get $c \cong \boldsymbol{d}=\mathbf{0 . 7 3 9 0 8 5 1 2 3 0}$ with an error that is less than $\frac{1}{2^{25}}$.

