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Central Problem

Central Problem: Solve f(x) = 0.

Question: Does a solution exist? If so, how do you find it?



The Intermediate Value Theorem

Theorem: [Intermediate Value Theorem (IVT)]

Assume that f () is continuous on [a, b] and that f(a) - f(b) < O.
Then there exists ¢ € (a, b) such that

fe) =o.

Note: We have f(a) - f(b) < Oifandonly if f(a) < 0 < f(b) or
f(b) <0< f(a).

Question: How can we estimate ¢ within a given error?
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Bisection Algorithm for Approximating Zeros

Problem: Given a continuous function f(x) and an e > 0, find an
approximation d to a solution & = c¢ for the equation

f(x) =0

such that
|d —c| < e.

Bisection Algorithm for Approximating Zeros:
Step 1: Find a, b so that f(a) - f(b) < 0.
Step 2: Letd = 21°.

Step 3: If f(d) = 0 then stop, else go to Step 4.
Step 4: If ”‘7“ < € then stop, else go to Step 5.

Step 5: If f(a) - f(d) < 0thenb = d and go to Step 2, else
go to Step 6.

Step 6: a = d and go to Step 2.
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Problem: Estimate ¢ so that cos(¢) = ¢ < cos(c) — ¢ = 0 with an
error less than k.
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Problem: Estimate ¢ so that cos(¢) = ¢ < cos(c) — ¢ = 0 with an
error less than k.
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Problem: Estimate ¢ so that cos(¢) = ¢ < cos(c) — ¢ = 0 with an
error less than k.
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Problem: Estimate ¢ so that cos(¢) = ¢ < cos(c) — ¢ = 0 with an
error less than k.

Start witha =0andb =1



Example

y =cos(z) —x
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Problem: Estimate ¢ so that cos(¢) = ¢ < cos(c) — ¢ = 0 with an
error less than k.

Start witha =0andb=1 = d = 0.5.
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d = 0.71875
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Solution: After 25 steps we get ¢ =2 d = 0.7390851230 with an error
that is less than 3.
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