The Bisection Algorithm for Approximating Zeros

Created by

Barbara Forrest and Brian Forrest

Central Problem: Solve f(x) = 0.

Question: Does a solution exist? If so, how do you find it?

The Intermediate Value Theorem

Theorem: [Intermediate Value Theorem (IVT)]

Assume that f(x) is continuous on [a, b] and that $f(a) \cdot f(b) < 0$. Then there exists $c \in (a, b)$ such that

f(c)=0.

Note: We have $f(a) \cdot f(b) < 0$ if and only if f(a) < 0 < f(b) or f(b) < 0 < f(a).

Question: How can we estimate c within a given error?

Use $d = \frac{a+b}{2}$ as an estimate. \Rightarrow **Error** = $|d - c| < \frac{b-a}{2}$.

Bisection Algorithm for Approximating Zeros

Problem: Given a continuous function f(x) and an $\epsilon > 0$, find an approximation d to a solution x = c for the equation

$$f(x) = 0$$

such that

 $|d-c|<\epsilon.$

Bisection Algorithm for Approximating Zeros:

Step 1: Find a, b so that $f(a) \cdot f(b) < 0$.

Step 2: Let
$$d = \frac{a+b}{2}$$

Step 3: If f(d) = 0 then stop, else go to Step 4.

Step 4: If $\frac{b-a}{2} < \epsilon$ then stop, else go to Step 5.

Step 5: If $f(a) \cdot f(d) < 0$ then b = d and go to Step 2, else go to Step 6.

Step 6: a = d and go to Step 2.

Problem: Estimate c so that $\cos(c) = c \Leftrightarrow \cos(c) - c = 0$ with an error less than $\frac{1}{2^{25}}$.

Problem: Estimate c so that $\cos(c) = c \Leftrightarrow \cos(c) - c = 0$ with an error less than $\frac{1}{2^{25}}$.

Problem: Estimate c so that $\cos(c) = c \Leftrightarrow \cos(c) - c = 0$ with an error less than $\frac{1}{2^{25}}$.

Problem: Estimate c so that $\cos(c) = c \Leftrightarrow \cos(c) - c = 0$ with an error less than $\frac{1}{2^{25}}$.

Start with a = 0 and b = 1

Problem: Estimate c so that $\cos(c) = c \Leftrightarrow \cos(c) - c = 0$ with an error less than $\frac{1}{2^{25}}$.

Start with a = 0 and $b = 1 \Rightarrow d = 0.5$.

Solution: After 25 steps we get $c \cong d = 0.7390851230$ with an error that is less than $\frac{1}{2^{25}}$.