Arithmetic Rules for Limits of Functions

Created by

Barbara Forrest and Brian Forrest

Arithmetic of Limits

Recall:

Theorem: [Arithmetic of Limits for Sequences]

Assume that $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=M$.

1) If $c \in \mathbb{R}$, then $\lim _{n \rightarrow \infty} c a_{n}=c \cdot \lim _{n \rightarrow \infty} a_{n}=c L$.
2) $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}=L+M$.
3) $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right) \cdot\left(\lim _{n \rightarrow \infty} b_{n}\right)=L M$.
4) If $b_{n} \neq 0$ for all $n \in \mathbb{N}$ and $M \neq 0$, then $\lim _{n \rightarrow \infty} \frac{1}{b_{n}}=\frac{1}{\lim _{n \rightarrow \infty} b_{n}}=\frac{1}{M}$.
5) If $b_{n} \neq 0$ for all $n \in \mathbb{N}$ and $M \neq 0$, then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}=\frac{L}{M}$.
6) If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=S$ and $\lim _{n \rightarrow \infty} b_{n}=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Arithmetic of Limits

Theorem: [Arithmetic of Limits for Functions]
Assume that $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$.

1) If $c \in \mathbb{R}$, then $\lim _{x \rightarrow a} c f(x)=c L$.
2) $\lim _{x \rightarrow a}(f(x)+g(x))=L+M$.
3) $\lim _{x \rightarrow a} f(x) g(x)=L M$.
4) If $M \neq 0$, then $\lim _{x \rightarrow a} \frac{1}{g(x)}=\frac{1}{M}$.
5) If $M \neq 0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M}$.
6) If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=S$ and $\lim _{x \rightarrow a} g(x)=0$, then $\lim _{x \rightarrow a} f(x)=0$.

Arithmetic of Limits

Theorem

If

1) $\lim _{x \rightarrow a} g(x)=0$ and
2) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L$ exists,
then $\lim _{x \rightarrow a} f(x)$ exists and equals 0 .

Proof:

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a} \frac{f(x)}{g(x)} \cdot g(x) \\
& =\left(\lim _{x \rightarrow a} \frac{f(x)}{g(x)}\right) \cdot\left(\lim _{x \rightarrow a} g(x)\right) \\
& =L \cdot 0 \\
& =0 .
\end{aligned}
$$

Limits of Polynomial Functions

Theorem: [Limits of Polynomial Functions]
Let $p(x)$ be any polynomial. That is,

$$
p(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n} .
$$

Then

$$
\lim _{x \rightarrow a} p(x)=p(a)
$$

Rational Functions

Definition: [Rational Function]

A rational function is a function of the form

$$
f(x)=\frac{P(x)}{Q(x)}
$$

where $P(x)$ and $Q(x)$ are polynomials.

Problem: How do we find

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} \frac{P(x)}{Q(x)} ?
$$

Example

which implies that $\lim _{x \rightarrow 1} \frac{x^{2}-2 x}{x^{2}-x}$ does not exist.
Observation: The graph of $f(x)$ shows that the function is "unbounded" near $x=1$.

Limits of Rational Functions

The following algorithm can be used to compute

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} \frac{P(x)}{Q(x)} .
$$

Step 1) If $Q(a) \neq 0$, then $\lim _{x \rightarrow a} f(x)=\frac{\lim _{x \rightarrow a} P(x)}{\lim _{x \rightarrow a} Q(x)}=\frac{P(a)}{Q(a)}=f(a)$.
Step 2) If $Q(a)=0$ and $P(a) \neq 0$, then the limit does not exist.
Step 3) If $Q(a)=0=P(a)$, then both $P(x)$ and $Q(x)$ can be factored into $Q(x)=(x-a) Q_{1}(x)$ and
$P(x)=(x-a) P_{1}(x)$
$\Rightarrow f(x)=\frac{(x-a) P_{1}(x)}{(x-a) Q_{1}(x)}=\frac{P_{1}(x)}{Q_{1}(x)}=f_{1}(x)$ for any $x \neq a$.
Repeat Step 1) with $f_{1}(x)=\frac{P_{1}(x)}{Q_{1}(x)}$.

Examples

Recall: The graph of $f(x)=\frac{x^{2}-2 x}{x^{2}-x}=\frac{P(x)}{Q(x)}$ appears as follows:

Examples

Example: Find

$\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} \frac{x^{2}-2 x}{x^{2}-x}$.
Solution: Note that

$$
\begin{aligned}
Q(3) & =(3)^{2}-3 \\
& =6 \neq 0 .
\end{aligned}
$$

Hence
$\lim _{x \rightarrow 3} f(x)=f(3)$

$$
\begin{aligned}
& =\frac{3^{2}-2(3)}{3^{2}-3} \\
& =\frac{1}{2} .
\end{aligned}
$$

Example

Example: Find $\lim _{x \rightarrow 1} \frac{x^{2}-2 x}{x^{2}-x}$.
Solution: Since

$$
Q(1)=1^{2}-1=0
$$

it follows that $\lim _{x \rightarrow 1} \frac{x^{2}-2 x}{x^{2}-x}$ does not exist.

Examples

$$
\text { Example: Find } \lim _{x \rightarrow 0} \frac{x^{2}-2 x}{x^{2}-x} \text {. }
$$

Solution: Note that

$$
P(0)=0=Q(0)
$$

Hence

$$
\begin{aligned}
\lim _{x \rightarrow 0} f(x) & =\lim _{x \rightarrow 0} \frac{(x)(x-2)}{(x)(x-1)} \\
& =\lim _{x \rightarrow 0} \frac{x-2}{x-1} \\
& =\frac{\lim _{x \rightarrow 0}(x-2)}{\lim _{x \rightarrow 0}(x-1)} \\
& =\frac{-2}{-1}=2
\end{aligned}
$$

