Arithmetic Rules for Continuity

Created by

Barbara Forrest and Brian Forrest

Sequential Characterization of Continuity

Recall:

Theorem: [Sequential Characterization of Continuity]

The following are equivalent:

- 1) f(x) is continuous at x = a.
- 2) If $\{x_n\}$ is a sequence with $x_n \to a$, then $\lim_{n \to \infty} f(x_n) = f(a)$.

Theorem: [Arithmetic Rules for Continuity]

- If f and g are both continuous at x = a, then we have the following:
 - 1. $(cf)(x) = c \cdot f(x)$ is continuous at x = a for all $c \in \mathbb{R}$.
 - 2. (f+g)(x) = f(x) + g(x) is continuous at x = a.
 - 3. (fg)(x) = f(x)g(x) is continuous at x = a.
 - 4. If $g(a) \neq 0$, then $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ is continuous at x = a.

Remark:

- 1) Let P(x) be any polynomial. Then P(x) is continuous at any $a \in \mathbb{R}$.
- 2) Let $f(x) = \frac{P(x)}{Q(x)}$ be a rational function. Then f(x) is continuous at x = a if and only if $Q(a) \neq 0$.
- 3) If a rational function $f(x) = \frac{P(x)}{Q(x)}$ is not continuous at x = a, then either x = a is a removable discontinuity or x = a is a vertical asymptote.

Continuity of Composite Functions

Theorem: [Continuity of Composite Functions]

If f(x) is continuous at x = a and g(y) is continuous at y = f(a), then $h(x) = g \circ f(x)$ is continuous at x = a.

Proof: Let $x_n \to a$. Then $f(x_n) \to f(a)$ since f(x) is continuous at x = a. Since g(y) is continuous at f(a),

 $h(x_n) = g \circ f(x_n) = g(f(x_n)) \rightarrow g(f(a)) = g \circ f(a) = h(a).$

Therefore, h(x) is continuous at x = a by the Sequential Characterization of Continuity.

Example: The function

$$f(x) = e^{x^2 \sin(x)}$$

is continuous on \mathbb{R} .