Arithmetic Rules for Continuity

Created by

Barbara Forrest and Brian Forrest

Sequential Characterization of Continuity

Recall:

Theorem: [Sequential Characterization of Continuity]
The following are equivalent:

1) $f(x)$ is continuous at $x=a$.
2) If $\left\{x_{n}\right\}$ is a sequence with $x_{n} \rightarrow a$, then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$.

Arithmetic Rules for Continuity

Theorem: [Arithmetic Rules for Continuity]
If f and g are both continuous at $x=a$, then we have the following:

1. $(c f)(x)=c \cdot f(x)$ is continuous at $x=a$ for all $c \in \mathbb{R}$.
2. $(f+g)(x)=f(x)+g(x)$ is continuous at $x=a$.
3. $(f g)(x)=f(x) g(x)$ is continuous at $x=a$.
4. If $g(a) \neq 0$, then $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$ is continuous at $x=a$.

Polynomials and Rational Functions

Remark:

1) Let $\boldsymbol{P}(x)$ be any polynomial. Then $\boldsymbol{P}(x)$ is continuous at any $a \in \mathbb{R}$.
2) Let $f(x)=\frac{P(x)}{Q(x)}$ be a rational function. Then $f(x)$ is continuous at $x=a$ if and only if $Q(a) \neq 0$.
3) If a rational function $f(x)=\frac{P(x)}{Q(x)}$ is not continuous at $x=a$, then either $x=a$ is a removable discontinuity or $x=a$ is a vertical asymptote.

Continuity of Composite Functions

Theorem: [Continuity of Composite Functions]

If $f(x)$ is continuous at $x=a$ and $g(y)$ is continuous at $y=f(a)$, then $h(x)=g \circ f(x)$ is continuous at $x=a$.

Proof: Let $x_{n} \rightarrow a$. Then $f\left(x_{n}\right) \rightarrow f(a)$ since $f(x)$ is continuous at $x=a$. Since $g(y)$ is continuous at $f(a)$,

$$
h\left(x_{n}\right)=g \circ f\left(x_{n}\right)=g\left(f\left(x_{n}\right)\right) \rightarrow g(f(a))=g \circ f(a)=h(a) .
$$

Therefore, $h(x)$ is continuous at $x=a$ by the Sequential Characterization of Continuity.

Example: The function

$$
f(x)=e^{x^{2} \sin (x)}
$$

is continuous on \mathbb{R}.

