Approximating Roots of a Polynomial

Created by

Barbara Forrest and Brian Forrest

Roots of a Polynomial

Definition: [Roots of a Polynomial]

If $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ is a polynomial, then a root of $p(x)$ is any number c such that $p(c)=0$.

Problem: How do you know if a polynomial

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

has any real roots and if it does, how do you find them?

Roots of a Linear Polynomial

Example: Linear Polynomials

If $p(x)=a x+b$, where $a \neq 0$, the only real root is given by

$$
x=\frac{-b}{a} .
$$

Roots of a Quadratic Polynomial

Example: Quadratic Polynomials
If $p(x)=a x^{2}+b x+c$, the quadratic formula tells us that $p(x)=0$ if and only if

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Hence, $p(x)$ has a real root if and only if $b^{2}-4 a c \geq 0$.

Roots of a 5th Degree Polynomial

Example: Does $\boldsymbol{p}(x)=x^{5}+x-1$ have any real roots and if so, how can we find one?

Remarks:

1) There is no formula to find the roots of a generic fifth degree polynomial.
2) We have

$$
p(0)=0^{5}+0-1=-1<0 \text { and } p(1)=1^{5}+1-1=1>0 .
$$

3) Since $p(x)$ is continuous on the closed interval $[0,1]$, the IVT guarantees that there is a point c with $0<c<1$ such that $p(c)=0$.
4) Since $p^{\prime}(x)=5 x^{4}+1>0, p(x)$ has only one root.

Question: Can the IVT help us find c ?

Roots of a 5th Degree Polynomial

Step 1: We know that if $p(x)=x^{5}+x-1$, then

$$
p(0)<0 \text { and } p(1)>0
$$

so $c \in(0,1)$.

Roots of a 5th Degree Polynomial

Step 2: Test the midpoint $d_{1}=\frac{1}{2}$ between 0 and 1 to get

$$
p\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{5}+\frac{1}{2}-1=-\frac{15}{32}<0
$$

We have $p\left(\frac{1}{2}\right)<0$ and $p(1)>0$, so $c \in\left(\frac{1}{2}, 1\right)$.

Roots of a 5th Degree Polynomial

Step 3: Test the midpoint $d_{2}=\frac{3}{4}=.75$ between $\frac{1}{2}$ and 1 .
If $p(.75)>0$, then since $p(.5)<0$, the root would be in the interval [.5, .75].

If $p(.75)<0$, the root would be in the interval $[.75,1]$ since we know that $p(1)>0$.
In fact,

$$
p(.75)=-.0126953<0
$$

so the root is in the interval $[.75,1]$.

Roots of a 5th Degree Polynomial

Step 4: Find the new midpoint:

$$
d_{3}=\frac{1+.75}{2}=.875
$$

Test this new midpoint to find that

$$
p(.875)=.3879089>0
$$

Since the sign change now occurs between 0.75 and 0.875 , the next interval of interest is $[.75, .875]$.

Roots of a 5th Degree Polynomial

Step 5: Again, find the new midpoint:

$$
d_{4}=\frac{.75+.875}{2}=.8125
$$

We get that

$$
p(.8125)=.1665926>0
$$

so we know that the root lies in the interval [.75, .8125].

Roots of a 5th Degree Polynomial

Step 6: Continue by finding the next midpoint

$$
d_{5}=\frac{.75+.8125}{2}=.78125
$$

and then determine that

$$
p(.78125)=.0722883>0
$$

Since $p(.78125)$ is the same sign as $p(.8125)$, we replace 0.8125 with 0.78125 to give us the new interval $[.75, .78125]$.

Roots of a 5th Degree Polynomial

Step 7: The next midpoint becomes

$$
d_{6}=\frac{.75+.78125}{2}=.765625
$$

We have

$$
p(.765625)=.0287006>0
$$

so the root is in the interval $[.75, .765625]$.

Roots of a 5th Degree Polynomial

Step 8: The next midpoint is

$$
d_{7}=\frac{.75+.765625}{2}=.7578125
$$

Evaluating $p(x)$ at this point gives

$$
p(.7578125)=.007737>0
$$

so the sign change occurs between $x=.75$ and $x=.7578125$
Step 9: One more iteration of the procedure gives us a new midpoint

$$
d_{8}=\frac{.75+.7578125}{2}=.75390625
$$

with

$$
p(.75390625)=-.002544<0
$$

Replace 0.75 as the new left-hand endpoint with 0.75390625 so that

$$
0.75390625<c<0.7578125
$$

Roots of a 5th Degree Polynomial

Observation: We have not found c, but we know that

$$
0.75390625<c<0.7578125
$$

The length of this interval is

$$
.7578125-0.75390625=.00390625=\frac{1}{256}=\frac{1}{2^{8}} .
$$

Note: The original interval had length 1 and we have run through 8 iterations of the procedure with each iteration producing a new interval exactly $\frac{1}{2}$ of the length of the previous interval.

Roots of a 5th Degree Polynomial

Conclusion: If we want to make the final estimate d_{9} of the root, the midpoint of the previous two endpoints is

$$
c \cong d_{9}=\frac{0.75390625+0.7578125}{2}=0.755859375
$$

The error in the estimate is at most the maximum distance from the final estimate to each of the two endpoints in the final interval. That is,

$$
\left|d_{9}-c\right|=|0.755859375-c| \leq \frac{1}{2^{9}}=\frac{1}{512}
$$

