Squeeze Theorem for Sequences

Created by

Barbara Forrest and Brian Forrest

Example: Consider the sequence $\{\frac{\sin(n)}{n}\}$.

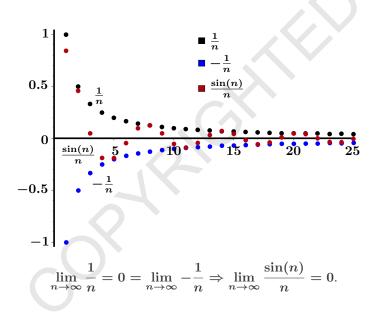
Does it converge? If so, what does it converge to?

Note that $|\sin(n)| \leq 1$ for all n, so

$$|\frac{\sin(n)}{n}| \le \frac{1}{n}.$$
$$-\frac{1}{n} \le \frac{\sin(n)}{n} \le \frac{1}{n}.$$

Then

Example (continued)



Squeeze Theorem for Sequences

Theorem: [Squeeze Theorem for Sequences]

Assume that $\{a_n\}, \{b_n\}$, and $\{c_n\}$ are such that

 $c_n \leq b_n \leq a_n$

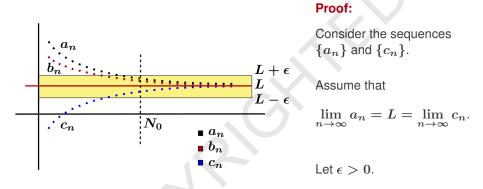
for all $n \in \mathbb{N}$. Assume also that

$$\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n.$$

Then $\lim_{n \to \infty} b_n$ exists and

$$\lim_{n \to \infty} b_n = L.$$

Proof of Squeeze Theorem for Sequences



We can find an N_0 such that if $n \ge N_0$, then

$$L - \epsilon < c_n \le a_n < L + \epsilon.$$

Therefore, if $n \geq N_0$

$$L - \epsilon < c_n \le b_n \le a_n < L + \epsilon \Rightarrow |b_n - L| < \epsilon.$$