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Monotonic Sequences

Definition: [Monotonic Sequences]

We say that a sequence {an} is:

I increasing if an < an+1, for all n ∈ N.
I non-decreasing if an ≤ an+1, for all n ∈ N.
I decreasing if an > an+1, for all n ∈ N.
I non-increasing if an ≥ an+1, for all n ∈ N. e
I monotonic if {an} is either non-decreasing or non-increasing.
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Examples of Monotonic Sequences
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I The sequence { 1
n
} is decreasing.

I The sequence { n
n+1
} = {1− 1

n+1
} is increasing.

I The sequence {cos(n)} is neither non-decreasing or non-increasing.

I The constant sequence {1} is both non-decreasing and non-increasing.
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Examples of Monotonic Sequences
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Examples of Monotonic Sequences
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I The sequence { 1
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} is decreasing.

I The sequence { n
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} is increasing.

I The sequence {cos(n)} is neither non-decreasing or non-increasing.

I The constant sequence {1} is both non-decreasing and non-increasing.
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Examples of Monotonic Sequences
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Monotone Convergence Theorem

Theorem: [Monotone Convergence Theorem (MCT)]

1) If {an} is non-decreasing and bounded above, then {an}
converges to L = lub{an}.

2) If {an} is non-decreasing and unbounded, then {an} diverges to
∞.

Note: A non-decreasing sequence converges if and only if it is bounded.
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Monotone Convergence Theorem

L− ε L

aN an

Proof of (1):

Assume that {an} is non-decreasing and bounded with L = lub{an}.
Let ε > 0. Then L− ε < L, so L− ε is not an upper bound of {an}.
Hence, we can find an N ∈ N such that L− ε < aN .

If n ≥ N , then
L− ε < aN ≤ an ≤ L.

This shows that if n ≥ N , then | an − L |< ε. So

lim
n→∞

an = L.COPYRIG
HTED



Monotone Convergence Theorem

N

M > 0

0 n

an

aN

Proof of (2):

Assume that {an} is
non-decreasing and
unbounded.

Let M > 0.

Since {an} is unbounded
there exists N ∈ N such that

M < aN .

Since {an} is non-decreasing, if n ≥ N then

M < aN ≤ an.

So {an} diverges to∞.COPYRIG
HTED



Monotone Convergence Theorem

Note: We can also show that:

I if {an} is non-increasing and bounded below, then

lim
n→∞

an = glb{an}.

I if {an} is non-increasing and unbounded, it diverges to−∞.
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Example
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Example: Let {an} be defined
recursively by

a1 = 1, an+1 =
√
3 + 2an.

Show that {an} converges.

Claim:

0 ≤ an ≤ an+1 ≤ 3.COPYRIG
HTED



Example

Proof of the Claim:

Let P (n) be the statement that

0 ≤ an ≤ an+1 ≤ 3.

Step 1: Show P (1) holds.

We have
a2 =

√
3 + 2 · 1 =

√
5

so
0 ≤ a1 = 1 ≤

√
5 = a2 ≤ 3.

=⇒ P (1) holds.
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Example

Step 2: Assume P (k) holds and then show that P (k + 1) holds:

P (k) =⇒ 0 ≤ ak ≤ ak+1 ≤ 3

=⇒ 0 ≤ 2ak ≤ 2ak+1 ≤ 6

=⇒ 3 ≤ 3 + 2ak ≤ 3 + 2ak+1 ≤ 9

=⇒
√
3 ≤
√
3 + 2ak ≤

√
3 + 2ak+1 ≤

√
9

=⇒ 0 ≤ ak+1 ≤ ak+2 ≤ 3

=⇒ P (k + 1) holds.

Conclusion: {an} is non-decreasing and bounded above by 3. By the
MCT {an} converges.

Question: Does this prove lim
n→∞

an = 3?
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Example
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Example
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Example
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Question: Why 3?

Graphically: The graphs of y = x and y =
√
3 + 2x intersect at

x = 3.
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Example

Algebraically: Assume lim
n→∞

an = L.

an → L ⇒ 3 + 2an → 3 + 2L

⇒
√
3 + 2an →

√
3 + 2L

⇒ an+1 →
√
3 + 2L.

Then
L = lim

n→∞
an = lim

n→∞
an+1 =

√
3 + 2L

⇒ L =
√
3 + 2L.
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Example

If

L =
√
3 + 2L ⇒ L2 = 3 + 2L

⇒ L2 − 2L− 3 = 0

⇒ (L− 3)(L+ 1) = 0

then
L = 3 or L = −1.

Since an > 0⇒ L = 3.
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Summary

Summary:

I If {an} is non-decreasing and bounded above
⇒ lim

n→∞
an = lub{an}.

I If {an} is non-decreasing and unbounded⇒ lim
n→∞

an =∞.

I If {an} is non-increasing and bounded below
⇒ lim

n→∞
an = glb{an}.

I If {an} is non-increasing and unbounded⇒ lim
n→∞

an = −∞.
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