# Monotone Convergence Theorem 

Created by

Barbara Forrest and Brian Forrest

## Monotonic Sequences

## Definition: [Monotonic Sequences]

We say that a sequence $\left\{a_{n}\right\}$ is:

- increasing if $a_{n}<a_{n+1}$, for all $n \in \mathbb{N}$.
- non-decreasing if $a_{n} \leq a_{n+1}$, for all $n \in \mathbb{N}$.
- decreasing if $a_{n}>a_{n+1}$, for all $n \in \mathbb{N}$.
- non-increasing if $a_{n} \geq a_{n+1}$, for all $n \in \mathbb{N}$. e
- monotonic if $\left\{a_{n}\right\}$ is either non-decreasing or non-increasing.


## Examples of Monotonic Sequences



- The sequence $\left\{\frac{1}{n}\right\}$ is decreasing.


## Examples of Monotonic Sequences



- The sequence $\left\{\frac{1}{n}\right\}$ is decreasing.
- The sequence $\left\{\frac{n}{n+1}\right\}=\left\{1-\frac{1}{n+1}\right\}$ is increasing.


## Examples of Monotonic Sequences



- The sequence $\left\{\frac{1}{n}\right\}$ is decreasing.
- The sequence $\left\{\frac{n}{n+1}\right\}=\left\{1-\frac{1}{n+1}\right\}$ is increasing.
- The sequence $\{\cos (\boldsymbol{n})\}$ is neither non-decreasing or non-increasing.


## Examples of Monotonic Sequences



- The sequence $\left\{\frac{1}{n}\right\}$ is decreasing.
- The sequence $\left\{\frac{n}{n+1}\right\}=\left\{1-\frac{1}{n+1}\right\}$ is increasing.
- The sequence $\{\cos (\boldsymbol{n})\}$ is neither non-decreasing or non-increasing.
- The constant sequence $\{1\}$ is both non-decreasing and non-increasing.


## Monotone Convergence Theorem

## Theorem: [Monotone Convergence Theorem (MCT)]

1) If $\left\{a_{n}\right\}$ is non-decreasing and bounded above, then $\left\{a_{n}\right\}$ converges to $L=\operatorname{lub}\left\{a_{n}\right\}$.
2) If $\left\{a_{n}\right\}$ is non-decreasing and unbounded, then $\left\{a_{n}\right\}$ diverges to $\infty$.

Note: A non-decreasing sequence converges if and only if it is bounded.

## Monotone Convergence Theorem



## Proof of (1):

Assume that $\left\{a_{n}\right\}$ is non-decreasing and bounded with $L=\operatorname{lub}\left\{a_{n}\right\}$. Let $\epsilon>0$. Then $L-\epsilon<L$, so $L-\epsilon$ is not an upper bound of $\left\{a_{n}\right\}$. Hence, we can find an $N \in \mathbb{N}$ such that $L-\epsilon<a_{N}$.
If $n \geq N$, then

$$
L-\epsilon<a_{N} \leq a_{n} \leq L
$$

This shows that if $n \geq N$, then $\left|a_{n}-L\right|<\epsilon$. So

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

## Monotone Convergence Theorem



Proof of (2):
Assume that $\left\{a_{n}\right\}$ is non-decreasing and unbounded.

Let $\boldsymbol{M}>0$.
Since $\left\{a_{n}\right\}$ is unbounded there exists $N \in \mathbb{N}$ such that

$$
M<a_{N}
$$

Since $\left\{a_{n}\right\}$ is non-decreasing, if $n \geq N$ then

$$
M<a_{N} \leq a_{n}
$$

So $\left\{a_{n}\right\}$ diverges to $\infty$.

## Monotone Convergence Theorem

Note: We can also show that:

- if $\left\{a_{n}\right\}$ is non-increasing and bounded below, then

$$
\lim _{n \rightarrow \infty} a_{n}=g l b\left\{a_{n}\right\}
$$

- if $\left\{a_{n}\right\}$ is non-increasing and unbounded, it diverges to $-\infty$.


## Example



Example: Let $\left\{a_{n}\right\}$ be defined recursively by

$$
a_{1}=1, a_{n+1}=\sqrt{3+2 a_{n}} .
$$

Show that $\left\{a_{n}\right\}$ converges.

Claim:

$$
\mathbf{0} \leq a_{n} \leq a_{n+1} \leq \mathbf{3}
$$

## Example

## Proof of the Claim:

Let $\boldsymbol{P}(\boldsymbol{n})$ be the statement that

$$
0 \leq a_{n} \leq a_{n+1} \leq 3
$$

Step 1: Show $P(1)$ holds.
We have

$$
a_{2}=\sqrt{3+2 \cdot 1}=\sqrt{5}
$$

so

$$
0 \leq a_{1}=1 \leq \sqrt{5}=a_{2} \leq 3
$$

$\Longrightarrow P(1)$ holds.

## Example

Step 2: Assume $P(k)$ holds and then show that $P(k+1)$ holds:

$$
\begin{aligned}
P(k) & \Longrightarrow 0 \leq a_{k} \leq a_{k+1} \leq 3 \\
& \Longrightarrow 0 \leq 2 a_{k} \leq 2 a_{k+1} \leq 6 \\
& \Longrightarrow 3 \leq 3+2 a_{k} \leq 3+2 a_{k+1} \leq 9 \\
& \Longrightarrow \sqrt{3} \leq \sqrt{3+2 a_{k}} \leq \sqrt{3+2 a_{k+1}} \leq \sqrt{9} \\
& \Longrightarrow 0 \leq a_{k+1} \leq a_{k+2} \leq 3
\end{aligned}
$$

$\Longrightarrow P(k+1)$ holds.
Conclusion: $\left\{a_{n}\right\}$ is non-decreasing and bounded above by 3 . By the MCT $\left\{a_{n}\right\}$ converges.

Question: Does this prove $\lim _{n \rightarrow \infty} a_{n}=3$ ?

## Example



## Example



## Example



## Example



Example


## Example



## Example



Question: Why 3?

## Example



Question: Why 3?
Graphically: The graphs of $y=x$ and $y=\sqrt{3+2 x}$ intersect at $x=3$.

## Example

Algebraically: Assume $\lim _{n \rightarrow \infty} a_{n}=L$.

$$
\begin{aligned}
a_{n} \rightarrow L & \Rightarrow 3+2 a_{n} \rightarrow 3+2 L \\
& \Rightarrow \sqrt{3+2 a_{n}} \rightarrow \sqrt{3+2 L} \\
& \Rightarrow a_{n+1} \rightarrow \sqrt{3+2 L} .
\end{aligned}
$$

Then

$$
\begin{gathered}
L=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n+1}=\sqrt{3+2 L} \\
\Rightarrow L=\sqrt{3+2 L}
\end{gathered}
$$

## Example

If

$$
\begin{aligned}
L=\sqrt{3+2 L} & \Rightarrow L^{2}=3+2 L \\
& \Rightarrow L^{2}-2 L-3=0 \\
& \Rightarrow(L-3)(L+1)=0
\end{aligned}
$$

then

$$
L=3 \quad \text { or } \quad L=-1 .
$$

Since $a_{n}>0 \Rightarrow L=3$.

## Summary

## Summary:

- If $\left\{a_{n}\right\}$ is non-decreasing and bounded above

$$
\Rightarrow \lim _{n \rightarrow \infty} a_{n}=\operatorname{lub}\left\{a_{n}\right\}
$$

- If $\left\{a_{n}\right\}$ is non-decreasing and unbounded $\Rightarrow \lim _{n \rightarrow \infty} a_{n}=\infty$.
- If $\left\{a_{n}\right\}$ is non-increasing and bounded below $\Rightarrow \lim _{n \rightarrow \infty} a_{n}=g l b\left\{a_{n}\right\}$.
- If $\left\{a_{n}\right\}$ is non-increasing and unbounded $\Rightarrow \lim _{n \rightarrow \infty} a_{n}=-\infty$.

