Monotone Convergence Theorem

Created by

Barbara Forrest and Brian Forrest

Definition: [Monotonic Sequences]

We say that a sequence $\{a_n\}$ is:

- increasing if $a_n < a_{n+1}$, for all $n \in \mathbb{N}$.
- non-decreasing if $a_n \leq a_{n+1}$, for all $n \in \mathbb{N}$.
- decreasing if $a_n > a_{n+1}$, for all $n \in \mathbb{N}$.
- non-increasing if $a_n \geq a_{n+1}$, for all $n \in \mathbb{N}$. e
- monotonic if $\{a_n\}$ is either non-decreasing or non-increasing.

• The sequence $\{\frac{1}{n}\}$ is decreasing.

• The sequence $\{\frac{1}{n}\}$ is decreasing.

• The sequence $\left\{\frac{n}{n+1}\right\} = \left\{1 - \frac{1}{n+1}\right\}$ is increasing.

- The sequence $\{\frac{1}{n}\}$ is decreasing.
- The sequence $\left\{\frac{n}{n+1}\right\} = \left\{1 \frac{1}{n+1}\right\}$ is increasing.
- ▶ The sequence {cos(n)} is neither non-decreasing or non-increasing.

- The sequence $\{\frac{1}{n}\}$ is decreasing.
- The sequence $\left\{\frac{n}{n+1}\right\} = \left\{1 \frac{1}{n+1}\right\}$ is increasing.
- ▶ The sequence {cos(n)} is neither non-decreasing or non-increasing.
- ▶ The constant sequence {1} is both non-decreasing and non-increasing.

Theorem: [Monotone Convergence Theorem (MCT)]

- 1) If $\{a_n\}$ is non-decreasing and bounded above, then $\{a_n\}$ converges to $L = lub\{a_n\}$.
- 2) If $\{a_n\}$ is non-decreasing and unbounded, then $\{a_n\}$ diverges to ∞ .

Note: A non-decreasing sequence converges if and only if it is bounded.

Monotone Convergence Theorem

Proof of (1):

Assume that $\{a_n\}$ is non-decreasing and bounded with $L = lub\{a_n\}$. Let $\epsilon > 0$. Then $L - \epsilon < L$, so $L - \epsilon$ is **not** an upper bound of $\{a_n\}$. Hence, we can find an $N \in \mathbb{N}$ such that $L - \epsilon < a_N$.

If $n \geq N$, then

$$L - \epsilon < a_N \le a_n \le L.$$

This shows that if $n \geq N$, then $\mid a_n - L \mid < \epsilon$. So

 $\lim_{n \to \infty} a_n = L.$

Monotone Convergence Theorem

Proof of (2):

Assume that $\{a_n\}$ is non-decreasing and unbounded.

Let M > 0.

Since $\{a_n\}$ is unbounded there exists $N \in \mathbb{N}$ such that

 $M < a_N$.

Since $\{a_n\}$ is non-decreasing, if $n \ge N$ then

 $M < a_N \leq a_n$.

So $\{a_n\}$ diverges to ∞ .

Note: We can also show that:

• if $\{a_n\}$ is non-increasing and bounded below, then

 $\lim_{n \to \infty} a_n = glb\{a_n\}.$

• if $\{a_n\}$ is non-increasing and unbounded, it diverges to $-\infty$.

Example: Let $\{a_n\}$ be defined recursively by

$$a_1 = 1, \ a_{n+1} = \sqrt{3 + 2a_n}.$$

Show that $\{a_n\}$ converges.

Proof of the Claim:

Let P(n) be the statement that

$$0 \le a_n \le a_{n+1} \le 3.$$

Step 1: Show P(1) holds.

We have

$$a_2 = \sqrt{3 + 2 \cdot 1} = \sqrt{5}$$

SO

$$0 \le a_1 = 1 \le \sqrt{5} = a_2 \le 3.$$

 $\implies P(1)$ holds.

Step 2: Assume P(k) holds and then show that P(k + 1) holds:

$$\begin{array}{rcl} P(k) & \Longrightarrow & 0 \leq a_k \leq a_{k+1} \leq 3 \\ & \Longrightarrow & 0 \leq 2a_k \leq 2a_{k+1} \leq 6 \\ & \Longrightarrow & 3 \leq 3+2a_k \leq 3+2a_{k+1} \leq 9 \\ & \Longrightarrow & \sqrt{3} \leq \sqrt{3+2a_k} \leq \sqrt{3+2a_{k+1}} \leq \sqrt{9} \\ & \Longrightarrow & 0 \leq a_{k+1} \leq a_{k+2} \leq 3 \end{array}$$

 $\implies P(k+1)$ holds.

Conclusion: $\{a_n\}$ is non-decreasing and bounded above by 3. By the MCT $\{a_n\}$ converges.

Question: Does this prove $\lim_{n \to \infty} a_n = 3$?

Question: Why 3?

Question: Why 3?

Graphically: The graphs of y = x and $y = \sqrt{3 + 2x}$ intersect at x = 3.

Algebraically: Assume $\lim_{n \to \infty} a_n = L$.

$$\begin{array}{rcl} a_n \rightarrow L & \Rightarrow & 3+2a_n \rightarrow 3+2L \\ & \Rightarrow & \sqrt{3+2a_n} \rightarrow \sqrt{3+2L} \\ & \Rightarrow & a_{n+1} \rightarrow \sqrt{3+2L}. \end{array}$$

Then

$$L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1} = \sqrt{3 + 2L}$$

$$\Rightarrow L = \sqrt{3 + 2L}.$$

 $\begin{array}{rcl} L=\sqrt{3+2L} &\Rightarrow & L^2=3+2L\\ &\Rightarrow & L^2-2L-3=0\\ &\Rightarrow & (L-3)(L+1)=0 \end{array}$

then

lf

$$L=3$$
 or $L=-1.$

Since $a_n > 0 \Rightarrow L = 3$.

Summary:

- ► If $\{a_n\}$ is non-decreasing and bounded above $\Rightarrow \lim_{n \to \infty} a_n = lub\{a_n\}.$
- ▶ If $\{a_n\}$ is non-decreasing and unbounded $\Rightarrow \lim_{n \to \infty} a_n = \infty$.
- ► If $\{a_n\}$ is non-increasing and bounded below $\Rightarrow \lim_{n \to \infty} a_n = glb\{a_n\}.$
- ▶ If $\{a_n\}$ is non-increasing and unbounded $\Rightarrow \lim_{n \to \infty} a_n = -\infty$.