Limits of Sequences

Created by

Barbara Forrest and Brian Forrest

Definition of a Limit of a Sequence

Recall:

Formal Definition: [Limit of a Sequence]

We say that L is the *limit* of the sequence $\{a_n\}$ as n goes to infinity if for every $\epsilon>0$, there exists an $N\in\mathbb{N}$ such that if $n\geq N$, then

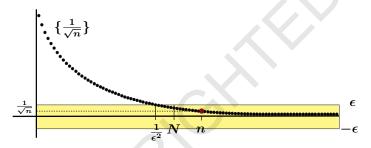
$$|a_n-L|<\epsilon.$$

In this case, we write

$$\lim_{n\to\infty}a_n=L.$$

We may also say $\{a_n\}$ converges to L and write $a_n \to L$.

If no such L exists, we say that $\{a_n\}$ diverges.



Example 1: Show that $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$.

Let $\epsilon>0.$ We need to find a cutoff N that satisfies the definition of the limit.

- $lackbox{Hence, if } rac{1}{\epsilon^2} < N ext{, then } n \geq N \Rightarrow \mid rac{1}{\sqrt{n}} 0 \mid < \epsilon.$

Therefore, we have shown the limit is 0.

Example 2: It can be shown that

$$\lim_{n\to\infty}\frac{3n+2}{4n+3}=\frac{3}{4}$$

Find a cutoff N so that if n > N, then

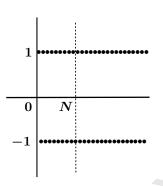
$$\left|\frac{3n+2}{4n+3} - \frac{3}{4}\right| < \frac{1}{1000}.$$

Solution: Observe that

$$\begin{vmatrix} \frac{3n+2}{4n+3} - \frac{3}{4} \\ = \begin{vmatrix} \frac{12n+8}{16n+12} - \frac{12n+9}{16n+12} \\ = \begin{vmatrix} \frac{-1}{16n+12} \\ \end{vmatrix}$$
$$= \frac{1}{16n+12}$$

We want

$$\frac{1}{16n+12} < \frac{1}{1000} \Rightarrow 1000 < 16n+12 \Rightarrow 61.75 < n, \text{ so } N = 62.$$



Example 3:

Consider $\{(-1)^{n+1}\} = \{1, -1, 1, -1, \ldots\}.$

Does $\{(-1)^{n+1}\}$ have a limit?

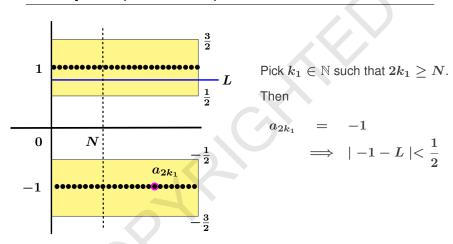
 $\lim_{n \to \infty} \{(-1)^{n+1}\} = 1?$

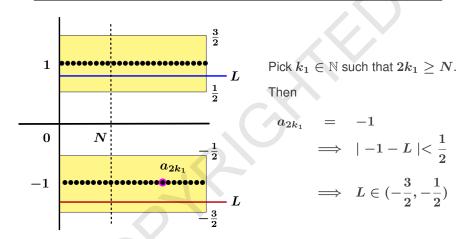
 $\lim_{n \to \infty} \{(-1)^{n+1}\} = -1?$

Or both?

Solution: Assume $\lim_{n\to\infty}\{(-1)^{n+1}\}=L$ and $\epsilon=\frac{1}{2}.$ Choose the cutoff N such that if $n\geq N$ then,

$$\mid (-1)^{n+1} - L \mid < \frac{1}{2}.$$

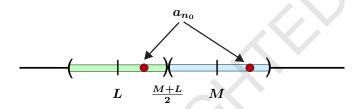




Hence, $L \in (-\frac{3}{2}, -\frac{1}{2})$ and $L \in (\frac{1}{2}, \frac{3}{2})$ which is impossible.

Therefore, $\{(-1)^{n+1}\}$ has no limit!

Uniqueness of Limits



Problem: Can $\{a_n\}$ have two different limits?

Assume $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} a_n = M$ with L < M.

Consider $\frac{M+L}{2}$. Let $\epsilon = \frac{M-L}{2}$.

Consider $a_{n_0}.$ If n_0 is large enough, then

$$a_{n_0} \in (M - \epsilon, M + \epsilon)$$

and $a_{n_0} \in (L-\epsilon, L+\epsilon)$

which is impossible!

Uniqueness of Limits

Theorem: [Uniqueness of Limits]

Assume that $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} a_n = M$. Then

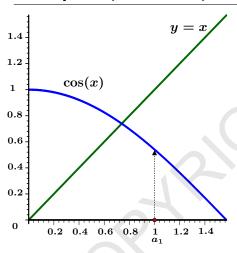
$$L=M$$
.

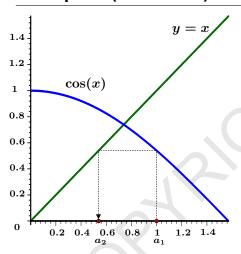
Note: It is often difficult to tell if a sequence converges and if so, what its limit might be.

Example 4: Consider the recursively defined sequence

$$a_1 = 1,$$
 $a_{n+1} = \cos(a_n).$

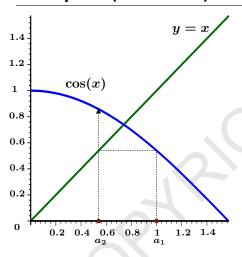
Does $\{a_n\}$ converge? If so, what is $\lim_{n\to\infty} a_n$?





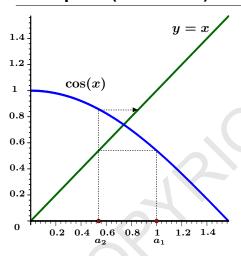
$$a_1 = 1,$$

 $a_2 = 0.5403023059,$



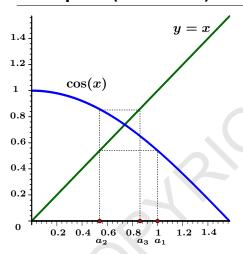
$$a_1 = 1,$$

 $a_2 = 0.5403023059,$

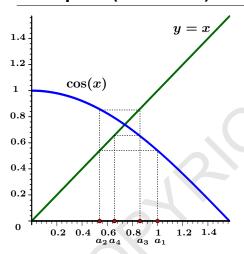


$$a_1 = 1,$$

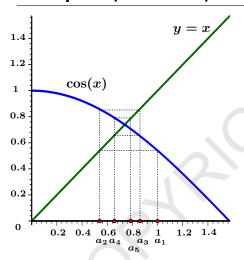
 $a_2 = 0.5403023059,$



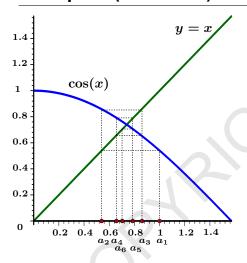
 $a_1 = 1,$ $a_2 = 0.5403023059,$ $a_3 = 0.8575532158,$



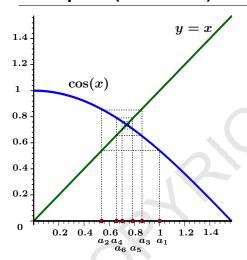
 $a_1 = 1,$ $a_2 = 0.5403023059,$ $a_3 = 0.8575532158,$ $a_4 = 0.6542897905,$



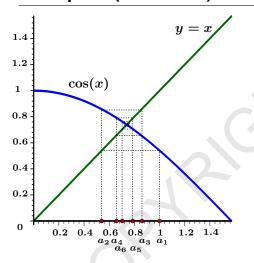
 $a_1 = 1,$ $a_2 = 0.5403023059,$ $a_3 = 0.8575532158,$ $a_4 = 0.6542897905,$ $a_5 = 0.7934803587,$



 $a_1 = 1,$ $a_2 = 0.5403023059,$ $a_3 = 0.8575532158,$ $a_4 = 0.6542897905,$ $a_5 = 0.7934803587,$ $a_6 = 0.7013687737,$

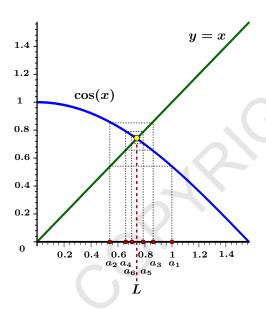


 $\begin{array}{l} a_1=1,\\ a_2=0.5403023059,\\ a_3=0.8575532158,\\ a_4=0.6542897905,\\ a_5=0.7934803587,\\ a_6=0.7013687737,\\ a_7=0.7639596829,\\ a_8=0.7221024250,\\ a_9=0.7504177618,\\ \end{array}$

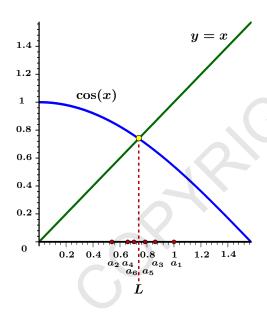


```
\begin{array}{l} a_1=1,\\ a_2=0.5403023059,\\ a_3=0.8575532158,\\ a_4=0.6542897905,\\ a_5=0.7934803587,\\ a_6=0.7013687737,\\ a_7=0.7639596829,\\ a_8=0.7221024250,\\ a_9=0.7504177618,\\ \end{array}
```

 $\begin{array}{l} 0.7314040424,\, 0.7442373549,\, 0.7356047404,\, 0.7414250866,\\ 0.7375068905,\, 0.7401473356,\, 0.7383692041,\, 0.7395672022,\\ 0.7387603199,\, 0.7393038924,\, 0.7389377567,\, 0.7391843998,\, \dots \end{array}$



 $a_{72}=0.7390851332,$ $a_{73}=0.7390851332,$ and $a_{74}=0.7390851332$ suggest that $\{a_n\}$ converges to some L.



$$a_{72}=0.7390851332,$$
 $a_{73}=0.7390851332,$ and $a_{74}=0.7390851332$ suggest that $\{a_n\}$ converges to some L . In fact,
$$cos(L)=L.$$