Limits of Sequences

Created by

Barbara Forrest and Brian Forrest

New Heuristic Definition:

We say that L is the *limit* of the sequence $\{a_n\}$ as n goes to infinity if no matter what positive tolerance $\epsilon > 0$ we are given, we can find a cutoff $N \in \mathbb{N}$ such that the terms a_n approximate L with an **error** less than ϵ provided that $n \geq N$.

Formal Definition: [Limit of a Sequence]

We say that L is the *limit* of the sequence $\{a_n\}$ as n goes to infinity if for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that if $n \ge N$, then

 $|a_n-L|<\epsilon.$

In this case, we say that $\{a_n\}$ converges to L and we write

 $\lim_{n \to \infty} a_n = L.$

If no such L exists we say that $\{a_n\}$ diverges.

- 1. Identify L.
- 2. Specify the error $\epsilon > 0$.
- 3. Find the cutoff N.
- 4. Choose a smaller ϵ_1 .
- 5. Repeat Step 3 with a larger N_1 .

It is useful to look at how this works on the Real line.

L

It is useful to look at how this works on the Real line.

L

```
Assume \lim_{n \to \infty} a_n = L and let \epsilon > 0.
```


It is useful to look at how this works on the Real line.

Assume $\lim_{n \to \infty} a_n = L$ and let $\epsilon > 0$.

We create an error band by moving ϵ units to the left from L to $L - \epsilon$,

Assume $\lim_{n \to \infty} a_n = L$ and let $\epsilon > 0$.

We create an error band by moving ϵ units to the left from L to $L - \epsilon$, and then ϵ units to the right from L to $L + \epsilon$.

Assume $\lim_{n \to \infty} a_n = L$ and let $\epsilon > 0$.

It is useful to look at how this works on the Real line.

```
Assume \lim_{n \to \infty} a_n = L and let \epsilon > 0.
```

We create an error band by moving ϵ units to the left from L to $L - \epsilon$, and then ϵ units to the right from L to $L + \epsilon$. This creates the interval $(L - \epsilon, L + \epsilon)$ as the "target."

Assume
$$\lim_{n \to \infty} a_n = L$$
 and let $\epsilon > 0$.

We create an error band by moving ϵ units to the left from L to $L - \epsilon$, and then ϵ units to the right from L to $L + \epsilon$. This creates the interval $(L - \epsilon, L + \epsilon)$ as the "target."

Assume
$$\lim_{n \to \infty} a_n = L$$
 and let $\epsilon > 0$.

We create an error band by moving ϵ units to the left from L to $L - \epsilon$, and then ϵ units to the right from L to $L + \epsilon$. This creates the interval $(L - \epsilon, L + \epsilon)$ as the "target."

Assume
$$\lim_{n \to \infty} a_n = L$$
 and let $\epsilon > 0$.

We create an error band by moving ϵ units to the left from L to $L - \epsilon$, and then ϵ units to the right from L to $L + \epsilon$. This creates the interval $(L - \epsilon, L + \epsilon)$ as the "target."

It is useful to look at how this works on the Real line.

```
Assume \lim_{n \to \infty} a_n = L and let \epsilon > 0.
```

- Not all terms in $\{a_n\}$ must fall in $(L \epsilon, L + \epsilon)$.
- We can find $N \in \mathbb{N}$ such that if $n \ge N \Rightarrow a_n \in (L \epsilon, L + \epsilon)$.

It is useful to look at how this works on the Real line.

```
Assume \lim_{n \to \infty} a_n = L and let \epsilon > 0.
```

- Not all terms in $\{a_n\}$ must fall in $(L \epsilon, L + \epsilon)$.
- We can find $N \in \mathbb{N}$ such that if $n \ge N \Rightarrow a_n \in (L \epsilon, L + \epsilon)$.

It is useful to look at how this works on the Real line.

```
Assume \lim_{n \to \infty} a_n = L and let \epsilon > 0.
```

- Not all terms in $\{a_n\}$ must fall in $(L \epsilon, L + \epsilon)$.
- We can find $N \in \mathbb{N}$ such that if $n \ge N \Rightarrow a_n \in (L \epsilon, L + \epsilon)$.

It is useful to look at how this works on the Real line.

```
Assume \lim_{n \to \infty} a_n = L and let \epsilon > 0.
```

- Not all terms in $\{a_n\}$ must fall in $(L \epsilon, L + \epsilon)$.
- We can find $N \in \mathbb{N}$ such that if $n \ge N \Rightarrow a_n \in (L \epsilon, L + \epsilon)$.

It is useful to look at how this works on the Real line.

```
Assume \lim_{n \to \infty} a_n = L and let \epsilon > 0.
```

- Not all terms in $\{a_n\}$ must fall in $(L \epsilon, L + \epsilon)$.
- We can find $N \in \mathbb{N}$ such that if $n \ge N \Rightarrow a_n \in (L \epsilon, L + \epsilon)$.

Assume that $\lim_{n\to\infty} a_n = L \in (a,b)$. We claim that (a,b) contains a tail of the sequence $\{a_n\}$.

Assume that $\lim_{n\to\infty} a_n = L \in (a,b)$. We claim that (a,b) contains a tail of the sequence $\{a_n\}$.

Choose

 $\epsilon \leq \min\{L-a, b-L\}.$

Assume that $\lim_{n\to\infty} a_n = L \in (a,b)$. We claim that (a,b) contains a tail of the sequence $\{a_n\}$.

Choose

$$\epsilon \le \min\{L-a, b-L\}.$$

Then

$$(L-\epsilon, L+\epsilon) \subseteq (a,b).$$

Assume that $\lim_{n\to\infty} a_n = L \in (a,b)$. We claim that (a,b) contains a tail of the sequence $\{a_n\}$.

Choose

$$\epsilon \le \min\{L-a, b-L\}.$$

Then

$$(L-\epsilon, L+\epsilon) \subseteq (a,b).$$

If n is large enough, then $a_n \in (L-\epsilon,L+\epsilon)$

Assume that $\lim_{n\to\infty}a_n=L\in(a,b)$. We claim that (a,b) contains a tail of the sequence $\{a_n\}$.

Choose

$$\epsilon \le \min\{L-a, b-L\}.$$

Then

$$(L-\epsilon, L+\epsilon) \subseteq (a,b).$$

If n is large enough, then $a_n \in (L-\epsilon,L+\epsilon)$ and hence

 $a_n \in (a,b).$

Theorem

The following statements are equivalent:

- 1. $\lim_{n \to \infty} a_n = L.$
- 2. Every interval $(L \epsilon, L + \epsilon)$ contains a **tail** of $\{a_n\}$.
- 3. Every interval $(L \epsilon, L + \epsilon)$ contains all but finitely many terms of $\{a_n\}$.
- 4. Every interval (a, b) containing L contains a tail of $\{a_n\}$.
- 5. Every interval (a, b) containing L contains all but finitely many terms of $\{a_n\}$.

Important Note: Changing finitely many terms in $\{a_n\}$ does not affect convergence.

Created by

Barbara Forrest and Brian Forrest

2017