Limits of Sequences

Created by

Barbara Forrest and Brian Forrest

The Limit of a Sequence

New Heuristic Definition:

We say that L is the limit of the sequence $\left\{a_{n}\right\}$ as n goes to infinity if no matter what positive tolerance $\epsilon>0$ we are given, we can find a cutoff $N \in \mathbb{N}$ such that the terms a_{n} approximate L with an error less than ϵ provided that $n \geq N$.

Formal Definition: [Limit of a Sequence]

We say that L is the limit of the sequence $\left\{a_{n}\right\}$ as n goes to infinity if for every $\boldsymbol{\epsilon}>\boldsymbol{0}$, there exists an $N \in \mathbb{N}$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$, then

$$
\left|a_{n}-L\right|<\epsilon .
$$

In this case, we say that $\left\{a_{n}\right\}$ converges to L and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L .
$$

If no such L exists we say that $\left\{a_{n}\right\}$ diverges.

The Limit of a Sequence

1. Identify L.
2. Specify the error $\epsilon>0$.
3. Find the cutoff N.
4. Choose a smaller ϵ_{1}.
5. Repeat Step 3 with a larger N_{1}.

The Limit of a Sequence

L

It is useful to look at how this works on the Real line.

The Limit of a Sequence

L

It is useful to look at how this works on the Real line.
Assume $\lim _{n \rightarrow \infty} a_{n}=L$ and let $\epsilon>0$.

The Limit of a Sequence

It is useful to look at how this works on the Real line.
Assume $\lim _{n \rightarrow \infty} a_{n}=L$ and let $\epsilon>0$.
We create an error band by moving ϵ units to the left from L to $L-\epsilon$,

The Limit of a Sequence

It is useful to look at how this works on the Real line.
Assume $\lim _{n \rightarrow \infty} a_{n}=L$ and let $\epsilon>0$.
We create an error band by moving ϵ units to the left from L to $L-\epsilon$, and then ϵ units to the right from L to $L+\epsilon$.

The Limit of a Sequence

It is useful to look at how this works on the Real line.
Assume $\lim _{n \rightarrow \infty} a_{n}=L$ and let $\epsilon>0$.
We create an error band by moving ϵ units to the left from L to $L-\epsilon$, and then ϵ units to the right from L to $L+\epsilon$. This creates the interval ($L-\epsilon, L+\epsilon$) as the "target."

The Limit of a Sequence

It is useful to look at how this works on the Real line.
Assume $\lim _{n \rightarrow \infty} a_{n}=L$ and let $\epsilon>0$.
We create an error band by moving ϵ units to the left from L to $L-\epsilon$, and then ϵ units to the right from L to $L+\epsilon$. This creates the interval $(L-\epsilon, L+\epsilon)$ as the "target."

- Not all terms in $\left\{a_{n}\right\}$ must fall in $(L-\epsilon, L+\epsilon)$.

The Limit of a Sequence

It is useful to look at how this works on the Real line.
Assume $\lim _{n \rightarrow \infty} a_{n}=L$ and let $\epsilon>0$.
We create an error band by moving ϵ units to the left from L to $L-\epsilon$, and then ϵ units to the right from L to $L+\epsilon$. This creates the interval $(L-\epsilon, L+\epsilon)$ as the "target."

- Not all terms in $\left\{a_{n}\right\}$ must fall in $(L-\epsilon, L+\epsilon)$.

The Limit of a Sequence

It is useful to look at how this works on the Real line.
Assume $\lim _{n \rightarrow \infty} a_{n}=L$ and let $\epsilon>0$.
We create an error band by moving ϵ units to the left from L to $L-\epsilon$, and then ϵ units to the right from L to $L+\epsilon$. This creates the interval ($L-\epsilon, L+\epsilon$) as the "target."

- Not all terms in $\left\{a_{n}\right\}$ must fall in $(L-\epsilon, L+\epsilon)$.

The Limit of a Sequence

It is useful to look at how this works on the Real line.
Assume $\lim _{n \rightarrow \infty} a_{n}=L$ and let $\epsilon>0$.
We create an error band by moving ϵ units to the left from L to $L-\epsilon$, and then ϵ units to the right from L to $L+\epsilon$. This creates the interval $(L-\epsilon, L+\epsilon)$ as the "target."

- Not all terms in $\left\{a_{n}\right\}$ must fall in $(L-\epsilon, L+\epsilon)$.

The Limit of a Sequence

$$
n \geq N
$$

It is useful to look at how this works on the Real line.
Assume $\lim _{n \rightarrow \infty} a_{n}=L$ and let $\epsilon>0$.
We create an error band by moving ϵ units to the left from L to $L-\epsilon$, and then ϵ units to the right from L to $L+\epsilon$. This creates the interval $(L-\epsilon, L+\epsilon)$ as the "target."

- Not all terms in $\left\{a_{n}\right\}$ must fall in $(L-\epsilon, L+\epsilon)$.
- We can find $N \in \mathbb{N}$ such that if $n \geq N \Rightarrow a_{n} \in(L-\epsilon, L+\epsilon)$.

The Limit of a Sequence

$$
n \geq N
$$

It is useful to look at how this works on the Real line.
Assume $\lim _{n \rightarrow \infty} a_{n}=L$ and let $\epsilon>0$.
We create an error band by moving ϵ units to the left from L to $L-\epsilon$, and then ϵ units to the right from L to $L+\epsilon$. This creates the interval $(L-\epsilon, L+\epsilon)$ as the "target."

- Not all terms in $\left\{a_{n}\right\}$ must fall in $(L-\epsilon, L+\epsilon)$.
- We can find $N \in \mathbb{N}$ such that if $n \geq N \Rightarrow a_{n} \in(L-\epsilon, L+\epsilon)$.

The Limit of a Sequence

$$
n \geq N
$$

$$
L-\epsilon \quad L \quad L+\epsilon
$$

It is useful to look at how this works on the Real line.
Assume $\lim _{n \rightarrow \infty} a_{n}=L$ and let $\epsilon>0$.
We create an error band by moving ϵ units to the left from L to $L-\epsilon$, and then ϵ units to the right from L to $L+\epsilon$. This creates the interval $(L-\epsilon, L+\epsilon)$ as the "target."

- Not all terms in $\left\{a_{n}\right\}$ must fall in $(L-\epsilon, L+\epsilon)$.
- We can find $N \in \mathbb{N}$ such that if $n \geq N \Rightarrow a_{n} \in(L-\epsilon, L+\epsilon)$.

The Limit of a Sequence

$$
n \geq N
$$

It is useful to look at how this works on the Real line.
Assume $\lim _{n \rightarrow \infty} a_{n}=L$ and let $\epsilon>0$.
We create an error band by moving ϵ units to the left from L to $L-\epsilon$, and then ϵ units to the right from L to $L+\epsilon$. This creates the interval $(L-\epsilon, L+\epsilon)$ as the "target."

- Not all terms in $\left\{a_{n}\right\}$ must fall in $(L-\epsilon, L+\epsilon)$.
- We can find $N \in \mathbb{N}$ such that if $n \geq N \Rightarrow a_{n} \in(L-\epsilon, L+\epsilon)$.

The Limit of a Sequence

$$
n \geq N
$$

It is useful to look at how this works on the Real line.
Assume $\lim _{n \rightarrow \infty} a_{n}=L$ and let $\epsilon>0$.
We create an error band by moving ϵ units to the left from L to $L-\epsilon$, and then ϵ units to the right from L to $L+\epsilon$. This creates the interval $(L-\epsilon, L+\epsilon)$ as the "target."

- Not all terms in $\left\{a_{n}\right\}$ must fall in $(L-\epsilon, L+\epsilon)$.
- We can find $N \in \mathbb{N}$ such that if $n \geq N \Rightarrow a_{n} \in(L-\epsilon, L+\epsilon)$.

The Limit of a Sequence

Assume that $\lim _{n \rightarrow \infty} a_{n}=L \in(a, b)$.

The Limit of a Sequence

Assume that $\lim _{n \rightarrow \infty} a_{n}=L \in(a, b)$. We claim that (a, b) contains a tail of the sequence $\left\{a_{n}\right\}$.

The Limit of a Sequence

Assume that $\lim _{n \rightarrow \infty} a_{n}=L \in(a, b)$. We claim that (a, b) contains a tail of the sequence $\left\{a_{n}\right\}$.

Choose

$$
\epsilon \leq \min \{L-a, b-L\}
$$

The Limit of a Sequence

Assume that $\lim _{n \rightarrow \infty} a_{n}=L \in(a, b)$. We claim that (a, b) contains a tail of the sequence $\left\{a_{n}\right\}$.

Choose

$$
\epsilon \leq \min \{L-a, b-L\}
$$

Then

$$
(L-\epsilon, L+\epsilon) \subseteq(a, b)
$$

The Limit of a Sequence

Assume that $\lim _{n \rightarrow \infty} a_{n}=L \in(a, b)$. We claim that (a, b) contains a tail of the sequence $\left\{a_{n}\right\}$.

Choose

$$
\epsilon \leq \min \{L-a, b-L\}
$$

Then

$$
(L-\epsilon, L+\epsilon) \subseteq(a, b)
$$

If n is large enough, then $a_{n} \in(L-\epsilon, L+\epsilon)$

The Limit of a Sequence

Assume that $\lim _{n \rightarrow \infty} a_{n}=L \in(a, b)$. We claim that (a, b) contains a tail of the sequence $\left\{a_{n}\right\}$.

Choose

$$
\epsilon \leq \min \{L-a, b-L\}
$$

Then

$$
(L-\epsilon, L+\epsilon) \subseteq(a, b)
$$

If n is large enough, then $a_{n} \in(L-\epsilon, L+\epsilon)$ and hence

$$
a_{n} \in(a, b)
$$

Summary

Theorem

The following statements are equivalent:

1. $\lim _{n \rightarrow \infty} a_{n}=L$.
2. Every interval $(L-\epsilon, L+\epsilon)$ contains a tail of $\left\{a_{n}\right\}$.
3. Every interval ($L-\epsilon, L+\epsilon$) contains all but finitely many terms of $\left\{a_{n}\right\}$.
4. Every interval (a, b) containing L contains a tail of $\left\{a_{n}\right\}$.
5. Every interval (a, b) containing L contains all but finitely many terms of $\left\{a_{n}\right\}$.

Important Note: Changing finitely many terms in $\left\{a_{n}\right\}$ does not affect convergence.

Created by

Barbara Forrest and Brian Forrest
2017

