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The Limit of a Sequence

New Heuristic Definition:

We say that L is the limit of the sequence {a, } as n goes to infinity if no
matter what positive tolerance € > 0 we are given, we can find a cutoff
N € N such that the terms a,, approximate L with an error less than €
provided that n > IN.

Formal Definition: [Limit of a Sequence]

We say that L is the limit of the sequence {a, } as n goes to infinity if for
every € > 0, there exists an N € N such thatif n > NN, then

| a, — L |< e

In this case, we say that {a,, } converges to L and we write

lim a,, = L.
n—oo

If no such L exists we say that {a,, } diverges.
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1. Identify L.

2. Specify the error € > 0.

3. Find the cutoff IV.

4. Choose a smaller €7.

5. Repeat Step 3 with a larger IV;.
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Assume that ILm a, = L € (a,b). We claim that (a, b) contains a
tail of the sequence {a}.

Choose
€ < min{L —a,b— L}.

Then
(L — € L+e€)C(a,b).
If n is large enough, then a,, € (L — €, L + €) and hence

a, € (a,b).



Summary

Theorem

The following statements are equivalent:

1. lim a,, = L.
n—o0

2. Every interval (L — €, L + €) contains a tail of {a, }.

3. Every interval (L — €, L + €) contains all but finitely many terms
of {an}.

4. Every interval (a, b) containing L contains a tail of {a,, }.

5. Every interval (a, b) containing L contains all but finitely many
terms of {a, }.

Important Note: Changing finitely many terms in {a., } does not affect
convergence.
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