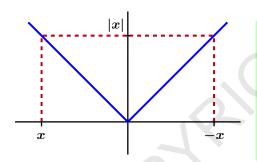
Absolute Value and the Triangle Inequality

Created by

Barbara Forrest and Brian Forrest

Absolute Value



Definition: [Absolute Value]

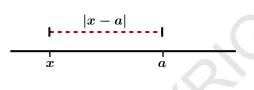
The absolute value of a real number x is the quantity

$$|x|= egin{cases} x & ext{if } x \geq 0, \ -x & ext{if } x < 0. \end{cases}$$

Properties:

- 1) $|x| \ge 0$
- 2) |x| = |-x|

Geometric Interpretation of Absolute Value



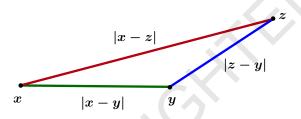
Remark: $|x| = \sqrt{x^2}$

The absolute value is the one-dimensional analogue of $\sqrt{x^2+y^2}$, which measures the "length" of a vector (x,y) in the plane.

Geometric Interpretation:

- |x| = the distance from x to 0.
- $\bullet \mid x a \mid =$ the distance from x to a.

Triangle Inequality



Theorem: [Triangle Inequality]

For any $x,y,z\in\mathbb{R}$

$$|x-y| \le |x-z| + |z-y|$$

Remark: The length of any side of a triangle is less than or equal to the sum of the other two sides.

Proof:

Proof:

We may assume x < y.

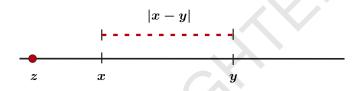
Proof:

We may assume x < y. There are three cases:

Proof:

We may assume x < y. There are three cases:

Case 1: z < x

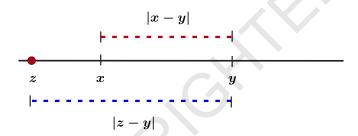


Proof:

We may assume x < y. There are three cases:

Case 1: z < x

$$|x-y|$$

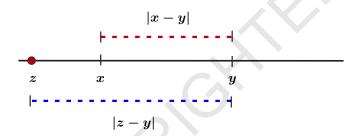


Proof:

We may assume x < y. There are three cases:

Case 1: z < x

$$|x-y| < |z-y|$$



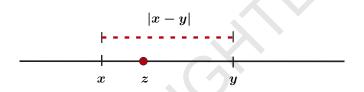
Proof:

We may assume x < y. There are three cases:

Case 1: z < x

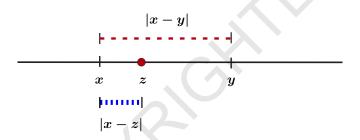
$$|x-y| < |z-y| \le |x-z| + |z-y|$$

Case 2: $x \leq z \leq y$



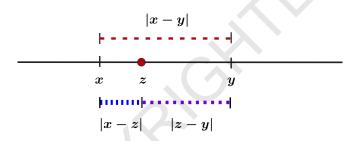
Case 2:
$$x \leq z \leq y$$

$$\mid x-y\mid$$



Case 2: $x \leq z \leq y$

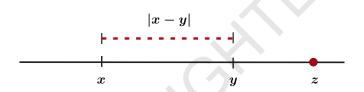
$$|x-y| = |x-z|$$



Case 2: $x \le z \le y$

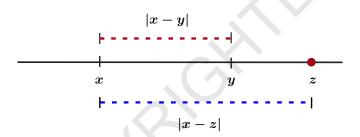
$$|x-y| = |x-z| + |z-y|$$

Case 3: y < z



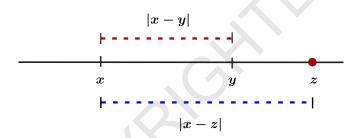
Case 3: y < z

$$|x-y|$$



Case 3: y < z

$$|x-y| < |x-z|$$



Case 3: y < z

$$|x-y| < |x-z| \le |x-z| + |z-y|$$

Variant of the Triangle Inequality

Theorem: [Triangle Inequality II]

Let $x,y\in\mathbb{R}$. Then

$$\mid x+y\mid \leq \mid x\mid +\mid y\mid$$

Proof: Let $x,y\in\mathbb{R}$. Applying the Triangle Inequality to x,-y and z=0 gives

$$|x+y| = |x-(-y)|$$

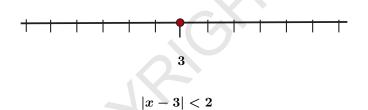
 $\leq |x-0|+|0-(-y)|$
 $= |x|+|y|$

Problem: Find all $x \in \mathbb{R}$ such that |x-3| < 2.

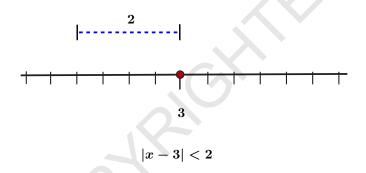
Approach 1: Algebraic Solution

$$\mid x-3\mid <2 \Longleftrightarrow -2 < x-3 < 2 \Longleftrightarrow -2+3 < x < 2+3$$

Solution: $x \in (1, 5)$.

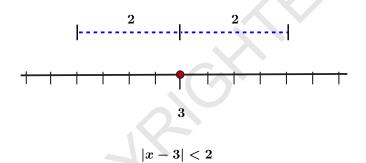


Approach 2: Geometric Solution



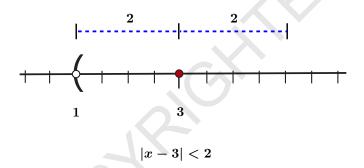
Approach 2: Geometric Solution

"distance from x to 3 is less than 2"



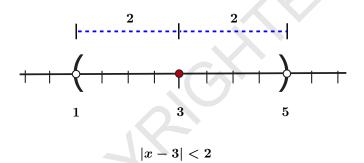
Approach 2: Geometric Solution

"distance from x to 3 is less than 2"



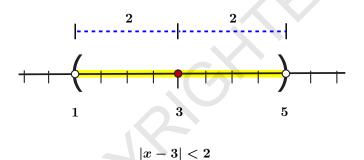
Approach 2: Geometric Solution

"distance from x to 3 is less than 2" $\Longrightarrow x>1$



Approach 2: Geometric Solution

"distance from x to 3 is less than 2" $\Longrightarrow x > 1$ and x < 5.

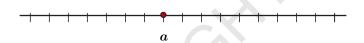


Approach 2: Geometric Solution

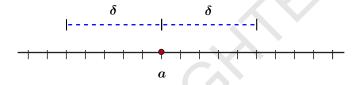
"distance from x to 3 is less than 2" $\Longrightarrow x>1$ and x<5.

Solution: $x \in (1, 5)$.

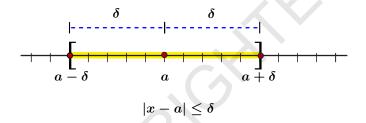
•



Important Inequalities:

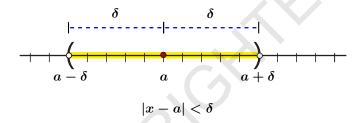


Important Inequalities: Let $\delta > 0$,



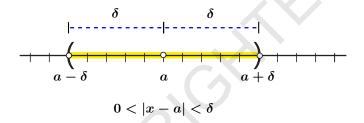
Important Inequalities: Let $\delta > 0$,

1. $|x-a| \le \delta$ if and only if $x \in [a-\delta, a+\delta]$.



Important Inequalities: Let $\delta > 0$,

- 1. $|x-a| \le \delta$ if and only if $x \in [a-\delta, a+\delta]$.
- 2. $|x-a|<\delta$ if and only if $x\in(a-\delta,a+\delta)$.



Important Inequalities: Let $\delta > 0$,

- 1. $|x-a| \le \delta$ if and only if $x \in [a-\delta, a+\delta]$.
- 2. $|x-a| < \delta$ if and only if $x \in (a-\delta, a+\delta)$.
- 3. $0<|x-a|<\delta$ if and only if $x\in(a-\delta,a+\delta)\setminus\{a\}$.