Least Upper Bound Property

Created by

Barbara Forrest and Brian Forrest

Bounded Sets

Definition: [Upper/Lower Bounds]

Let $S \subset \mathbb{R}$.

1. α is an upper bound for S if $x \leq \alpha$ for all $x \in S$.

Bounded Sets

Definition: [Upper/Lower Bounds]

Let $S \subset \mathbb{R}$.

1. α is an upper bound for S if $x \leq \alpha$ for all $x \in S$.
2. β is a lower bound for S if $\beta \leq x$ for all $x \in S$.

Bounded Sets

Definition: [Bounded Sets]

Let $S \subset \mathbb{R}$.

1. S is bounded above if S has an upper bound α.
2. S is bounded below if S has an lower bound β.

Bounded Sets

Definition: [Bounded Sets]

Let $S \subset \mathbb{R}$.

1. S is bounded above if S has an upper bound α.
2. S is bounded below if S has an lower bound β.
3. S is bounded if S is bound above and bounded below.

The Set $[0,1)$

Let $S=[0,1)$.

The Set $[0,1)$

Let $S=[0,1)$.

- S is bounded above by 2 .

The Set $[0,1)$

Let $S=[0,1)$.

- S is bounded above by 2 .
- S is also bounded above by 4 .

The Set $[0,1)$

Let $S=[0,1)$.

- S is bounded above by 2 .
- S is also bounded above by 4 .
- S has infinitely many upper bounds.

The Set $[0,1)$

Let $S=[0,1)$.

- S is bounded above by 2 .
- S is also bounded above by 4 .
- S has infinitely many upper bounds.
- 1 is a special upper bound for S.

The Set $[0,1)$

Let $S=[0,1)$.

- S is bounded above by 2 .
- S is also bounded above by 4 .
- S has infinitely many upper bounds.
- 1 is a special upper bound for S.
- 1 is the smallest or least upper bound for S.

The Set $[0,1)$

Let $S=[0,1)$.

The Set $[0,1)$

Let $S=[0,1)$.

- S is bounded below by -1 .

The Set $[0,1)$

Let $S=[0,1)$.

- S is bounded below by -1 .
- S is also bounded below by $\mathbf{- 2}$.

The Set $[0,1)$

Let $S=[0,1)$.

- S is bounded below by -1 .
- S is also bounded below by $\mathbf{- 2}$.
- S has infinitely many lower bounds.

The Set $[0,1)$

Let $S=[0,1)$.

- S is bounded below by -1 .
- S is also bounded below by $\mathbf{- 2}$.
- S has infinitely many lower bounds.
- 0 is a special lower bound for S.

The Set $[0,1)$

Let $S=[0,1)$.

- S is bounded below by -1 .
- S is also bounded below by $\mathbf{- 2}$.
- S has infinitely many lower bounds.
- 0 is a special lower bound for S.
- 0 is the largest or greatest lower bound for S.

Least Upper Bound

Definition: [Least Upper Bound]

We say that $\alpha \in \mathbb{R}$ is the least upper bound for a set $S \subset \mathbb{R}$ if

1. α is an upper bound for S, and
2. if γ is an upper bound for S, then $\alpha \leq \gamma$.

If a set S has a least upper bound, then we denote it by $l u b(S)$.
The least upper bound of S is often called the supremum of S, denoted by $\sup (S)$.

Greatest Lower Bound

Definition: [Greatest Lower Bound]

We say that $\beta \in \mathbb{R}$ is the greatest lower bound for a set $S \subset \mathbb{R}$ if

1. β is a lower bound for S, and
2. if γ is a lower bound for S, then $\beta \geq \gamma$.

If a set S has a greatest bound, then we denote it by $\operatorname{glb}(S)$.
The greatest lower bound of S is often called the infimum of S, denoted by $\inf (S)$.

The Set $[0,1)$

Let $S=[0,1)$.

The Set $[0,1)$

Let $S=[0,1)$.

- $\operatorname{lub}(S)=1$

Let $S=[0,1)$.

- $\operatorname{lub}(S)=1$
- $g l b(S)=0$

The Set $[0,1)$

Let $S=[0,1)$.

- $\operatorname{lub}(S)=1$
- $\operatorname{glb}(S)=0$

Note: $\operatorname{glb}(S)=0 \in S$,

The Set $[0,1)$

Let $S=[0,1)$.

- $\operatorname{lub}(S)=1$
- $\operatorname{glb}(S)=0$

Note: $\operatorname{glb}(S)=0 \in S$, but $\operatorname{lub}(S)=1 \notin S$.

Maximum and Minimum

Definition: [Maximum/Mininum]

1. If S contains $\alpha=\operatorname{lub}(S)$, then α is called the maximum of S and is denoted by $\max (S)$.
2. If S contains $\beta=\operatorname{glb}(S)$, then β is called the minimum of S and is denoted by $\min (S)$.

Example: If S is a finite set with n elements

$$
S=\left\{a_{1}<a_{2}<\cdots<a_{n}\right\}
$$

then

- $a_{n}=\operatorname{lub}(S)=\max (S)$, and
- $a_{1}=g l b(S)=\min (S)$.

The Empty Set

Problem: Does every set S that is bounded above have a LUB?

Axiom: [Least Upper Bound Property or LUBP]

A nonempty subset $S \subset \mathbb{R}$ that is bounded above always has a least upper bound.

Example

Example: Let S be the terms in the sequence $\left\{1-\frac{1}{n}\right\}$.
That is,

$$
S=\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \cdots\right\}
$$

Note: Each term is less than 1, but we can get as close to 1 as we would like so long as the index n is large enough.

Hence,

$$
1=\operatorname{lub}(S)
$$

We also know that

$$
1=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right) .
$$

The fact that the limit and the least upper bound agree is no accident.

