Least Upper Bound Property

Created by

Barbara Forrest and Brian Forrest

Let $S \subset \mathbb{R}$.

1. α is an *upper bound* for *S* if $x \leq \alpha$ for all $x \in S$.

 α

Definition: [Upper/Lower Bounds]

Let $S \subset \mathbb{R}$.

- 1. α is an *upper bound* for *S* if $x \leq \alpha$ for all $x \in S$.
- 2. β is a *lower bound* for S if $\beta \leq x$ for all $x \in S$.

Definition: [Bounded Sets]

Let $S \subset \mathbb{R}$.

- 1. S is bounded above if S has an upper bound α .
- 2. S is bounded below if S has an lower bound β .

Definition: [Bounded Sets]

Let $S \subset \mathbb{R}$.

- 1. S is bounded above if S has an upper bound α .
- 2. S is bounded below if S has an lower bound β .
- 3. S is bounded if S is bound above and bounded below.

- S is bounded above by 2.
- ▶ *S* is also bounded above by 4.

- S is bounded above by 2.
- ▶ *S* is also bounded above by 4.
- ► S has infinitely many upper bounds.

- S is bounded above by 2.
- S is also bounded above by 4.
- ► S has infinitely many upper bounds.
- ▶ 1 is a *special* upper bound for *S*.

- S is bounded above by 2.
- S is also bounded above by 4.
- ► *S* has infinitely many upper bounds.
- ▶ 1 is a *special* upper bound for *S*.
- ▶ 1 is the smallest or *least upper bound* for *S*.

-0

- S is bounded below by -1.
- S is also bounded below by -2.

- S is bounded below by -1.
- S is also bounded below by -2.
- ► S has infinitely many lower bounds.

- S is bounded below by -1.
- S is also bounded below by -2.
- ► S has infinitely many lower bounds.
- ▶ 0 is a *special* lower bound for *S*.

- S is bounded below by -1.
- S is also bounded below by -2.
- S has infinitely many lower bounds.
- \triangleright 0 is a *special* lower bound for *S*.
- ▶ 0 is the largest or *greatest lower bound* for *S*.

Definition: [Least Upper Bound]

We say that $lpha \in \mathbb{R}$ is the *least upper bound* for a set $S \subset \mathbb{R}$ if

- 1. α is an upper bound for S, and
- 2. if γ is an upper bound for S, then $\alpha \leq \gamma$.

If a set S has a least upper bound, then we denote it by lub(S).

The least upper bound of S is often called the *supremum* of S, denoted by sup(S).

Definition: [Greatest Lower Bound]

We say that $\beta \in \mathbb{R}$ is the *greatest lower bound* for a set $S \subset \mathbb{R}$ if

- 1. β is a lower bound for S, and
- 2. if γ is a lower bound for S, then $\beta \geq \gamma$.

If a set S has a greatest bound, then we denote it by glb(S).

The greatest lower bound of S is often called the *infimum* of S, denoted by inf(S).

Note: $glb(S) = 0 \in S$, but $lub(S) = 1 \not\in S$.

Definition: [Maximum/Mininum]

- 1. If S contains $\alpha = lub(S)$, then α is called the *maximum* of S and is denoted by max(S).
- 2. If S contains $\beta = glb(S)$, then β is called the *minimum* of S and is denoted by min(S).

Example: If S is a finite set with n elements

$$S = \{a_1 < a_2 < \dots < a_n\},\$$

then

▶
$$a_n = lub(S) = max(S)$$
, and
▶ $a_1 = glb(S) = min(S)$.

Problem: Does every set S that is bounded above have a LUB?

Axiom: [Least Upper Bound Property or LUBP]

A **nonempty** subset $S \subset \mathbb{R}$ that is bounded above always has a least upper bound.

Example: Let S be the terms in the sequence $\{1 - \frac{1}{n}\}$.

That is,

$$S = \{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \cdots \}.$$

Note: Each term is less than 1, but we can get as close to 1 as we would like so long as the index n is large enough.

Hence,

1 = lub(S).

We also know that

$$1 = \lim_{n o \infty} \left(1 - rac{1}{n}
ight).$$

The fact that the limit and the least upper bound agree is no accident.