Limits of Sequences I

Created by

Barbara Forrest and Brian Forrest

What is the Limit of a Sequence?

Consider $\left\{\frac{1}{n}\right\}$.
As n gets larger and larger, the terms get closer and closer to 0 .
We want to call 0 the limit of the sequence $\left\{\frac{1}{n}\right\}$ as n goes to ∞.

Heuristic Definition of a Limit of a Sequence

Heuristic Definition:
We say that L is the limit of the sequence $\left\{a_{n}\right\}$ as n goes to ∞ if as n gets larger and larger the terms of $\left\{a_{n}\right\}$ get closer and closer to L.

Question: What's wrong with this definition?

Heuristic Definition of a Limit of a Sequence

Again, consider $\left\{\frac{1}{n}\right\}$.

Heuristic Definition of a Limit of a Sequence

Again, consider $\left\{\frac{1}{n}\right\}$. As n gets larger and larger, the terms get closer and closer to 0 .

Heuristic Definition of a Limit of a Sequence

Again, consider $\left\{\frac{1}{n}\right\}$. As n gets larger and larger, the terms get closer and closer to 0 .

But these terms also get closer and closer to $\mathbf{- 1}$.

Heuristic Definition of a Limit of a Sequence

Question: What is special about 0 that makes us choose it as the limit of $\left\{\frac{1}{n}\right\}$ instead of -1 ?

Answer: The terms of $\left\{\frac{1}{n}\right\}$ approximate 0 as closely as we would like when \boldsymbol{n} is large enough, but these terms are never within $\mathbf{1}$ unit of $\mathbf{- 1}$.

The Limit of a Sequence

New Heuristic Definition:

We say that L is the limit of the sequence $\left\{a_{n}\right\}$ as n goes to infinity if no matter what positive tolerance $\epsilon>0$ we are given, we can find a cutoff $N \in \mathbb{N}$ such that the terms a_{n} approximate L with an error less than ϵ provided that $n \geq N$.

Formal Definition: [Limit of a Sequence]

We say that L is the limit of the sequence $\left\{a_{n}\right\}$ as n goes to infinity if for every $\boldsymbol{\epsilon}>\boldsymbol{0}$, there exists an $N \in \mathbb{N}$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$, then

$$
\left|a_{n}-L\right|<\epsilon .
$$

In this case, we say that $\left\{a_{n}\right\}$ converges to L and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L .
$$

If no such L exists we say that $\left\{a_{n}\right\}$ diverges.

The Limit of a Sequence

1. Identify L.
2. Specify the error $\epsilon>0$.
3. Find the cutoff N.
4. Choose a smaller ϵ_{1}.

The Limit of a Sequence

1. Identify L.
2. Specify the error $\epsilon>0$.
3. Find the cutoff N.
4. Choose a smaller ϵ_{1}.
5. Repeat Step 3 with a larger N_{1}.
