Limits of Sequences I

Created by

Barbara Forrest and Brian Forrest

What is the Limit of a Sequence?

Consider $\{\frac{1}{n}\}$.

As *n* gets larger and larger, the terms get closer and closer to 0. We want to call 0 *the limit of the sequence* $\{\frac{1}{n}\}$ as *n* goes to ∞ .

Heuristic Definition:

We say that L is the *limit of the sequence* $\{a_n\}$ as n goes to ∞ if as n gets larger and larger the terms of $\{a_n\}$ get closer and closer to L.

Question: What's wrong with this definition?

Again, consider $\{\frac{1}{n}\}$. As *n* gets larger and larger, the terms get closer and closer to 0.

Again, consider $\{\frac{1}{n}\}$. As *n* gets larger and larger, the terms get closer and closer to 0.

But these terms also get closer and closer to -1.

Question: What is special about 0 that makes us choose it as the limit of $\{\frac{1}{n}\}$ instead of -1?

Answer: The terms of $\{\frac{1}{n}\}$ approximate 0 as closely as we would like when *n* is large enough, but these terms are never within 1 unit of -1.

The Limit of a Sequence

New Heuristic Definition:

We say that L is the *limit* of the sequence $\{a_n\}$ as n goes to infinity if no matter what positive tolerance $\epsilon > 0$ we are given, we can find a cutoff $N \in \mathbb{N}$ such that the terms a_n approximate L with an **error** less than ϵ provided that $n \geq N$.

Formal Definition: [Limit of a Sequence]

We say that L is the *limit* of the sequence $\{a_n\}$ as n goes to infinity if for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that if $n \ge N$, then

 $|a_n-L|<\epsilon.$

In this case, we say that $\{a_n\}$ converges to L and we write

 $\lim_{n \to \infty} a_n = L.$

If no such L exists we say that $\{a_n\}$ diverges.

The Limit of a Sequence

- 1. Identify L.
- 2. Specify the error $\epsilon > 0$.
- 3. Find the cutoff N.
- 4. Choose a smaller ϵ_1 .

The Limit of a Sequence

- 1. Identify L.
- 2. Specify the error $\epsilon > 0$.
- 3. Find the cutoff N.
- 4. Choose a smaller ϵ_1 .
- 5. Repeat Step 3 with a larger N_1 .