Subsequences and Tails of Sequences

Created by

Barbara Forrest and Brian Forrest

Subsequences: New Sequences from Old

Definition: [Subsequence]

Given a sequence $\left\{a_{n}\right\}$ and a sequence $\left\{n_{k}\right\} \subset \mathbb{N}$ such that

$$
\boldsymbol{n}_{1}<\boldsymbol{n}_{2}<\boldsymbol{n}_{3} \ldots<\boldsymbol{n}_{\boldsymbol{k}} \ldots
$$

define

$$
b_{k}=a_{n_{k}}
$$

The sequence $\left\{b_{k}\right\}=\left\{a_{n_{1}}, a_{n_{2}}, a_{n_{3}}, \ldots, a_{n_{k}}, \ldots\right\}$ is called a subsequence of $\left\{a_{n}\right\}$.

Example: Let $a_{n}=\frac{1}{n}$ and $n_{k}=2 k$. Then

$$
b_{k}=a_{n_{k}}=a_{2 k}=\frac{1}{2 k} .
$$

Subsequences: New Sequences from Old

$$
\begin{aligned}
\left\{a_{n}\right\} & =\left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{2 k}, \ldots\right\} \\
\left\{b_{k}\right\} & =\left\{b_{1}, b_{2}, \ldots, b_{k}, \ldots\right\} \\
& =\left\{a_{2}, a_{4}, \ldots, a_{2 k}, \ldots\right\}
\end{aligned}
$$

Subsequences: New Sequences from Old

Example: Given $\left\{a_{n}\right\}$ and $j \in \mathbb{N} \cup\{0\}$, let

$$
\left\{b_{k}\right\}=\left\{a_{k+j}\right\}=\left\{a_{1+j}, a_{2+j}, a_{3+j}, \ldots\right\}
$$

For example if $j=3$, we get

$$
\left\{a_{k+3}\right\}_{k=1}^{\infty}=\left\{a_{1+3}, a_{2+3}, a_{3+3}, \ldots\right\}=\left\{a_{4}, a_{5}, a_{6}, \ldots\right\}
$$

Note: Such a subsequence is called a tail of $\left\{a_{n}\right\}$.

Created by

Barbara Forrest and Brian Forrest
2017

