Introduction to Sequences

Created by

Barbara Forrest and Brian Forrest

What is a Sequence?

Informally, a sequence is an ordered list of real numbers.
For example a phone number 519-555-1234 is a finite sequence of 1-digit numbers

$$
5-1-9-5-5-5-1-2-3-4 .
$$

Note: Order is important!
During our discussions, sequences will be infinite ordered lists of real numbers of the form $\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right\}$.

What is a Sequence?

More formally:

Definition: [Sequence]

A sequence is a function $f: \mathbb{N} \rightarrow \mathbb{R}$.
For $n \in \mathbb{N}$, we call $f(n)$ the nth term of the sequence and n is called the index.

Notation: We often write a_{n} or b_{n} or x_{n} instead of $f(n)$ to denote the nth term.

Specifying a Sequence

A sequence can be specified by:

1) Providing the explicit function:

- $f(n)=\frac{1}{n}$
- $a_{n}=\frac{1}{n}$
- $\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots\right\}$
- $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ or simply $\left\{\frac{1}{n}\right\}$

Note: Some references use round brackets instead of curly brackets to denote sequences. As such, you may encounter a sequence written as $\left(a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots\right)$ or $\left(a_{n}\right)_{n=1}^{\infty}$ or $\left(a_{n}\right)$.

Specifying a Sequence

2) Recursion:

Future terms in a sequence are defined from existing terms.
Example: Let $a_{1}=1$ and $a_{n+1}=\frac{1}{1+a_{n}}$.
What is a_{5} ?

- $a_{1}=1$
- $a_{2}=\frac{1}{1+a_{1}}=\frac{1}{1+1}=\frac{1}{2}$
- $a_{3}=\frac{1}{1+a_{2}}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3}$
- $a_{4}=\frac{1}{1+a_{3}}=\frac{1}{1+\frac{2}{3}}=\frac{3}{5}$
- $a_{5}=\frac{1}{1+a_{4}}=\frac{1}{1+\frac{3}{5}}=\frac{5}{8}$

Exercise: Can you find an explicit formula for a_{n} ?

Subsequences: New Sequences from Old

Definition: [Subsequence]

Given a sequence $\left\{a_{n}\right\}$ and a sequence $\left\{n_{k}\right\} \subset \mathbb{N}$ such that

$$
\boldsymbol{n}_{1}<\boldsymbol{n}_{2}<\boldsymbol{n}_{3} \ldots<\boldsymbol{n}_{\boldsymbol{k}} \ldots
$$

define

$$
b_{k}=a_{n_{k}}
$$

The sequence $\left\{b_{k}\right\}=\left\{a_{n_{1}}, a_{n_{2}}, a_{n_{3}}, \ldots, a_{n_{k}}, \ldots\right\}$ is called a subsequence of $\left\{a_{n}\right\}$.

Example: Let $a_{n}=\frac{1}{n}$ and $n_{k}=2 k$. Then

$$
b_{k}=a_{n_{k}}=a_{2 k}=\frac{1}{2 k} .
$$

Subsequences: New Sequences from Old

$$
\begin{aligned}
\left\{a_{n}\right\} & =\left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{2 k}, \ldots\right\} \\
\left\{b_{k}\right\} & =\left\{b_{1}, b_{2}, \ldots, b_{k}, \ldots\right\} \\
& =\left\{a_{2}, a_{4}, \ldots, a_{2 k}, \ldots\right\}
\end{aligned}
$$

Subsequences: New Sequences from Old

Example: Given $\left\{a_{n}\right\}$ and $j \in \mathbb{N} \cup\{0\}$, let

$$
\left\{b_{k}\right\}=\left\{a_{k+j}\right\}=\left\{a_{1+j}, a_{2+j}, a_{3+j}, \ldots\right\}
$$

For example if $j=3$, we get

$$
\left\{a_{k+3}\right\}_{k=1}^{\infty}=\left\{a_{1+3}, a_{2+3}, a_{3+3}, \ldots\right\}=\left\{a_{4}, a_{5}, a_{6}, \ldots\right\}
$$

Note: Such a subsequence is called a tail of $\left\{a_{n}\right\}$.

Graphical Representation of a Sequence

1) Standard 2-dimensional plot.

Example: $\left\{\frac{1}{n}\right\}$.

Graphical Representation of a Sequence

2) 1-dimensional plot.

Example: $\left\{\frac{1}{n}\right\}$.

Graphical Representation of a Sequence

Example: $a_{n}=(-1)^{n+1}$

Graphical Representation of a Sequence

Example: $a_{n}=(-1)^{n+1} \Rightarrow\{1$,

Graphical Representation of a Sequence

Example: $a_{n}=(-1)^{n+1} \Rightarrow\{1,-1$,

Graphical Representation of a Sequence

Example: $a_{n}=(-1)^{n+1} \Rightarrow\{1,-1,1$,

Graphical Representation of a Sequence

Example: $a_{n}=(-1)^{n+1} \Rightarrow\{1,-1,1,-1$,

Graphical Representation of a Sequence

Example: $a_{n}=(-1)^{n+1} \Rightarrow\{1,-1,1,-1, \ldots 1$,

Graphical Representation of a Sequence

Example: $a_{n}=(-1)^{n+1} \Rightarrow\{1,-1,1,-1, \ldots 1,-1$,

Graphical Representation of a Sequence

Example: $a_{n}=(-1)^{n+1} \Rightarrow\{1,-1,1,-1, \ldots 1,-1, \ldots\}$

