Introduction to Sequences

Created by

Barbara Forrest and Brian Forrest

Informally, a sequence is an ordered list of real numbers.

For example a phone number 519-555-1234 is a *finite* sequence of 1-digit numbers

$$5 - 1 - 9 - 5 - 5 - 5 - 1 - 2 - 3 - 4$$
.

Note: Order is important!

During our discussions, sequences will be *infinite ordered lists of real* numbers of the form $\{a_1, a_2, a_3, \ldots, a_n, \ldots\}$.

More formally:

Definition: [Sequence]

A sequence is a function $f : \mathbb{N} \to \mathbb{R}$.

For $n \in \mathbb{N}$, we call f(n) the *nth term* of the sequence and *n* is called *the index*.

Notation: We often write a_n or b_n or x_n instead of f(n) to denote the *n*th term.

Specifying a Sequence

A sequence can be specified by:

- 1) Providing the explicit function:
 - ▶ $f(n) = \frac{1}{n}$
 - ▶ $a_n = \frac{1}{n}$
 - $\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\}$
 - $\{\frac{1}{n}\}_{n=1}^{\infty}$ or simply $\{\frac{1}{n}\}$

Note: Some references use round brackets instead of curly brackets to denote sequences. As such, you may encounter a sequence written as $(a_1, a_2, a_3, \dots, a_n, \dots)$ or $(a_n)_{n=1}^{\infty}$ or (a_n) .

2) Recursion:

Future terms in a sequence are defined from existing terms.

Example: Let $a_1 = 1$ and $a_{n+1} = \frac{1}{1+a_n}$.

What is a_5 ?

a₁ = 1
a₂ = ¹/_{1+a₁} = ¹/₁₊₁ = ¹/₂
a₃ = ¹/_{1+a₂} = ¹/_{1+¹/₂} = ²/₃
a₄ = ¹/_{1+a₃} = ¹/_{1+²/₃} = ³/₅
a₅ = ¹/_{1+a₄} = ¹/_{1+³/₅} = ⁵/₈

Exercise: Can you find an explicit formula for a_n ?

Subsequences: New Sequences from Old

Definition: [Subsequence]

Given a sequence $\{a_n\}$ and a sequence $\{n_k\} \subset \mathbb{N}$ such that

$$n_1 < n_2 < n_3 \ldots < n_k \ldots$$

define

$$b_k = a_{n_k}.$$

The sequence $\{b_k\} = \{a_{n_1}, a_{n_2}, a_{n_3}, \dots, a_{n_k}, \dots\}$ is called a subsequence of $\{a_n\}$.

Example: Let $a_n = \frac{1}{n}$ and $n_k = 2k$. Then

$$b_k = a_{n_k} = a_{2k} = \frac{1}{2k}.$$

Subsequences: New Sequences from Old

$$\{a_n\} = \{a_1, a_2, a_3, a_4, \dots, a_{2k}, \dots\}$$
$$\{b_k\} = \{b_1, b_2, \dots, b_k, \dots\}$$
$$= \{a_2, a_4, \dots, a_{2k}, \dots\}$$

Subsequences: New Sequences from Old

Example: Given $\{a_n\}$ and $j \in \mathbb{N} \cup \{0\}$, let

$$\{b_k\} = \{a_{k+j}\} = \{a_{1+j}, a_{2+j}, a_{3+j}, \ldots\}.$$

For example if j = 3, we get

$$\{a_{k+3}\}_{k=1}^{\infty} = \{a_{1+3}, a_{2+3}, a_{3+3}, \ldots\} = \{a_4, a_5, a_6, \ldots\}.$$

Note: Such a subsequence is called a *tail* of $\{a_n\}$.

1) Standard 2-dimensional plot.

Example: $\left\{\frac{1}{n}\right\}$.

2) 1-dimensional plot.

Example: $\left\{\frac{1}{n}\right\}$.

Example: $a_n = (-1)^{n+1}$

Example: $a_n = (-1)^{n+1} \Rightarrow \{1,$

Example: $a_n = (-1)^{n+1} \Rightarrow \{1, -1,$

Example: $a_n = (-1)^{n+1} \Rightarrow \{1, -1, 1, \dots, n\}$

Example: $a_n = (-1)^{n+1} \Rightarrow \{1, -1, 1, -1, \dots, n\}$

Example: $a_n = (-1)^{n+1} \Rightarrow \{1, -1, 1, -1, \dots, 1, \dots\}$

Example: $a_n = (-1)^{n+1} \Rightarrow \{1, -1, 1, -1, \dots, 1, -1, \dots \}$

Example: $a_n = (-1)^{n+1} \Rightarrow \{1, -1, 1, -1, \dots, 1, -1, \dots\}$