Introduction to Series

Created by
Barbara Forrest and Brian Forrest

A Problem to Consider

Problem:

Can infinitely many tasks be performed in a finite amount of time?

The Paradox of Achilles

A

Paradox of Achilles

- Achilles races a tortoise who is given a head start.
- Achilles reaches the point where the tortoise began, but the tortoise has moved ahead to a new point.
- Achilles reaches the new point. Again, the tortoise has moved ahead.
- Achilles reaches the next point, and again the tortoise has moved ahead.
- And so on . . .
- Conclusion: Achilles can never catch the tortoise!!!

Resolving The Paradox of Achilles

Resolving the Paradox

Resolving The Paradox of Achilles

Resolving the Paradox
We call each time Achilles moves
to where the tortoise was a stage.

Resolving The Paradox of Achilles

Resolving the Paradox
We call each time Achilles moves to where the tortoise was a stage.

- $d_{1}=$ distance Achilles traveled in stage 1

Resolving The Paradox of Achilles

Resolving the Paradox
We call each time Achilles moves to where the tortoise was a stage.

- $d_{1}=$ distance Achilles traveled in stage $1 \Rightarrow t_{1}=$ time to complete stage 1

Resolving The Paradox of Achilles

Resolving the Paradox
We call each time Achilles moves to where the tortoise was a stage.

- $d_{1}=$ distance Achilles traveled in stage $1 \Rightarrow t_{1}=$ time to complete stage 1
- $d_{2}=$ distance Achilles traveled in stage 2

Resolving The Paradox of Achilles

Resolving the Paradox
We call each time Achilles moves to where the tortoise was a stage.

- $d_{1}=$ distance Achilles traveled in stage $1 \Rightarrow t_{1}=$ time to complete stage 1
- $d_{2}=$ distance Achilles traveled in stage $2 \Rightarrow t_{2}=$ time to complete stage 2

Resolving The Paradox of Achilles

Resolving the Paradox
We call each time Achilles moves to where the tortoise was a stage.

- $d_{1}=$ distance Achilles traveled in stage $1 \Rightarrow t_{1}=$ time to complete stage 1
- $d_{2}=$ distance Achilles traveled in stage $2 \Rightarrow t_{2}=$ time to complete stage 2
- $d_{n}=$ distance Achilles traveled in stage n

Resolving The Paradox of Achilles

Resolving the Paradox

We call each time Achilles moves to where the tortoise was a stage.

- $d_{1}=$ distance Achilles traveled in stage $1 \Rightarrow t_{1}=$ time to complete stage 1
- $d_{2}=$ distance Achilles traveled in stage $2 \Rightarrow t_{2}=$ time to complete stage 2
- $d_{n}=$ distance Achilles traveled in stage $\mathrm{n} \Rightarrow t_{n}=$ time to complete stage n

Resolving The Paradox of Achilles

Resolving the Paradox

We call each time Achilles moves to where the tortoise was a stage.

- $d_{1}=$ distance Achilles traveled in stage $1 \Rightarrow t_{1}=$ time to complete stage 1
- $d_{2}=$ distance Achilles traveled in stage $2 \Rightarrow t_{2}=$ time to complete stage 2
- $d_{n}=$ distance Achilles traveled in stage $\mathrm{n} \Rightarrow t_{n}=$ time to complete stage n

Time to catch the Tortoise $=t_{1}+t_{2}+\cdots+t_{n}+\cdots$

Resolving The Paradox of Achilles

Resolving the Paradox

We call each time Achilles moves to where the tortoise was a stage.

- $d_{1}=$ distance Achilles traveled in stage $1 \Rightarrow t_{1}=$ time to complete stage 1
- $d_{2}=$ distance Achilles traveled in stage $2 \Rightarrow t_{2}=$ time to complete stage 2
- $d_{n}=$ distance Achilles traveled in stage $\mathrm{n} \Rightarrow t_{n}=$ time to complete stage n

$$
\text { Time to catch the Tortoise }=t_{1}+t_{2}+\cdots+t_{n}+\cdots
$$

$=\infty$?

Introduction to Series

Problem:

Can we add infinitely many numbers at the same time?
More precisely, given a sequence $\left\{a_{n}\right\}$, we can form the formal sum

$$
a_{1}+a_{2}+a_{3}+\cdots=\sum_{n=1}^{\infty} a_{n}
$$

which is called a series.

Question:

What does this formal sum represent? Does it have a value?

Introduction to Series

Example: What is

$$
\begin{aligned}
\frac{1}{2} & +\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\cdots \\
& =\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots+\frac{1}{2^{n}}+\cdots ?
\end{aligned}
$$

Introduction to Series

Geometric Interpretation

$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\cdots$
$=1$?

Introduction to Series

Introduction to Series

Sum of Areas
Total Area Covered
$\frac{1}{2}$

$$
1-\frac{1}{2}
$$

Introduction to Series

Sum of Areas
Total Area Covered
$\frac{1}{2}+\frac{1}{4}$

$$
1-\frac{1}{4}
$$

Introduction to Series

Sum of Areas
Total Area Covered

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}
$$

$$
1-\frac{1}{8}
$$

Introduction to Series

Sum of Areas
Total Area Covered

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
$$

$$
1-\frac{1}{16}
$$

Introduction to Series

Sum of Areas
Total Area Covered

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}
$$

$$
1-\frac{1}{32}
$$

Introduction to Series

Sum of Areas
Total Area Covered

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}
$$

$$
1-\frac{1}{64}
$$

Introduction to Series

Sum of Areas
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}$

Total Area Covered

$$
1-\frac{1}{128}
$$

Introduction to Series

Sum of Areas
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}$
$+\frac{1}{256}$

Total Area Covered

$$
1-\frac{1}{256}
$$

Introduction to Series

Sum of Areas

$$
\begin{aligned}
& \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128} \\
& +\frac{1}{256}+\frac{1}{512}
\end{aligned}
$$

Total Area Covered

$$
1-\frac{1}{512}
$$

Introduction to Series

Sum of Areas

$$
\begin{aligned}
& \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128} \\
& +\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}
\end{aligned}
$$

Total Area Covered

$$
1-\frac{1}{1024}
$$

Introduction to Series

Sum of Areas

$$
\begin{aligned}
& \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128} \\
& +\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\cdots+\frac{1}{2^{k}}
\end{aligned}
$$

Total Area Covered

$$
1-\frac{1}{2^{k}}
$$

Introduction to Series

Note:

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{k}} & =\lim _{k \rightarrow \infty} \sum_{n=1}^{k} \frac{1}{2^{n}} \\
& =\lim _{k \rightarrow \infty} 1-\frac{1}{2^{k}} \\
& =1
\end{aligned}
$$

Series

Definition: [Series]

Given a sequence $\left\{a_{n}\right\}$, the formal sum

$$
a_{1}+a_{2}+a_{3}+a_{4}+\cdots+a_{n}+\cdots
$$

is called a series. (The series is called formal because we have not yet given it a meaning numerically.)

The a_{n} 's are called the terms of the series. For each term a_{n}, the number n is called the index of the term.

We denote the series by

$$
\sum_{n=1}^{\infty} a_{n}
$$

Convergent/Divergent Series

Definition: [Convergent Series]

Given a sequence $\left\{a_{n}\right\}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, we define the k th partial sum S_{k} of the series $\sum_{n=1}^{\infty} a_{n}$ by

$$
S_{k}=a_{1}+a_{2}+\cdots+a_{k}=\sum_{n=1}^{k} a_{n}
$$

We say that the series $\sum_{n=1}^{\infty} a_{n}$ converges if the sequence of partial sums $\left\{S_{k}\right\}$ converges. In this case, we write

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{k \rightarrow \infty} S_{k}
$$

Otherwise, we say that the series diverges and the sum has no defined value.

Example

Example:

Suppose $a_{n}=\frac{1}{2^{n}}$. We know that

$$
S_{k}=\sum_{n=1}^{k} \frac{1}{2^{n}}=1-\frac{1}{2^{k}} \rightarrow 1
$$

Hence, $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ converges with

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1
$$

Why Use Limits?

Question: Why use limits?
Suppose $a_{n}=(-1)^{n+1}$. Then the formal sum looks like

$$
a_{1}+a_{2}+a_{3}+\cdots=1+(-1)+1+(-1)+1+(-1)+\cdots
$$

We could parenthesize the formal sum as follows:
$[1+(-1)]+[1+(-1)]+[1+(-1)]+\cdots=0+0+0+\cdots=0$.
Alternatively, we could parenthesize the formal sum as:
$1+[(-1)+1]+[(-1)+1]+[(-1)+1]+\cdots=1+0+0+0+\cdots=1$.
Our result is ambiguous; the "sum" changes if we change the way we parenthesize the terms!

Why Use Limits?

Observe:

$$
\begin{aligned}
& S_{1}=1 \\
& S_{2}=1-1=0 \\
& S_{3}=1-1+1=1 \\
& S_{4}=1-1+1-1=0
\end{aligned}
$$

We get

$$
S_{k}=1+(-1)+1+\cdots+(-1)^{k+1}= \begin{cases}1 & \text { if } k \text { is odd } \\ 0 & \text { if } k \text { is even. }\end{cases}
$$

Thus, $\left\{S_{k}\right\}=\{1,0,1,0,1,0, \cdots\}$ diverges.

Example

Example: Determine if the series
converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+n}
$$

Solution: Observe that

$$
a_{n}=\frac{1}{n^{2}+n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}
$$

so the series becomes

We have

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)
$$

$$
\begin{aligned}
S_{k} & =\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{k}-\frac{1}{k+1}\right) \\
& =1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{4}\right)-\cdots-\left(\frac{1}{k}-\frac{1}{k}\right)-\frac{1}{k+1} \\
& =1-0-0-0-\cdots-0-\frac{1}{k+1}=1-\frac{1}{k+1} \rightarrow 1
\end{aligned}
$$

