Created by

Barbara Forrest and Brian Forrest

A Problem to Consider

Problem:

Can infinitely many tasks be performed in a finite amount of time?

The Paradox of Achilles

Paradox of Achilles

- Achilles races a tortoise who is given a head start.
- Achilles reaches the point where the tortoise began, but the tortoise has moved ahead to a new point.
- Achilles reaches the new point. Again, the tortoise has moved ahead.
- Achilles reaches the next point, and again the tortoise has moved ahead.
- And so on
- Conclusion: Achilles can never catch the tortoise!!!

Resolving the Paradox

Resolving the Paradox

Resolving the Paradox

We call each time Achilles moves to where the tortoise was a *stage*.

 $lackbox{lack} d_1 = ext{distance Achilles traveled in stage 1}$

Resolving the Paradox

We call each time Achilles moves to where the tortoise was a *stage*.

 $lackbox{ } d_1 = ext{distance Achilles traveled in stage 1} \Rightarrow t_1 = ext{time to complete stage 1}$

Resolving the Paradox

- $lacktriangledown d_1 = ext{distance}$ Achilles traveled in stage 1 $\Rightarrow t_1 = ext{time}$ to complete stage 1
- d_2 = distance Achilles traveled in stage 2

Resolving the Paradox

- $lacktriangledown d_1 = ext{distance}$ Achilles traveled in stage 1 $\Rightarrow t_1 = ext{time}$ to complete stage 1
- $d_2=$ distance Achilles traveled in stage 2 \Rightarrow $t_2=$ time to complete stage 2

Resolving the Paradox

- $lacktriangledown d_1 = ext{distance}$ Achilles traveled in stage 1 $\Rightarrow t_1 = ext{time}$ to complete stage 1
- $lackbox{ } d_2 = ext{distance Achilles traveled in stage 2} \Rightarrow t_2 = ext{time to complete stage 2}$
- $d_n =$ distance Achilles traveled in stage n

Resolving the Paradox

- $lacktriangledown d_1 = ext{distance}$ Achilles traveled in stage 1 $\Rightarrow t_1 = ext{time}$ to complete stage 1
- $d_2=$ distance Achilles traveled in stage 2 \Rightarrow $t_2=$ time to complete stage 2
- $lackbox{ } d_n = ext{distance Achilles traveled in stage n} \Rightarrow t_n = ext{time to complete stage n}$

Resolving the Paradox

We call each time Achilles moves to where the tortoise was a *stage*.

- $d_1=$ distance Achilles traveled in stage 1 $\Rightarrow t_1=$ time to complete stage 1
- $d_2=$ distance Achilles traveled in stage 2 \Rightarrow $t_2=$ time to complete stage 2
- $lackbox{ } d_n = ext{distance Achilles traveled in stage n} \Rightarrow t_n = ext{time to complete stage n}$

Time to catch the Tortoise $= t_1 + t_2 + \cdots + t_n + \cdots$

Resolving the Paradox

- $lackbox{ } d_1 = ext{distance}$ Achilles traveled in stage 1 $\Rightarrow t_1 = ext{time}$ to complete stage 1
- $d_2=$ distance Achilles traveled in stage 2 \Rightarrow $t_2=$ time to complete stage 2
- $lackbox{ } d_n = ext{distance Achilles traveled in stage n} \Rightarrow t_n = ext{time to complete stage n}$

Time to catch the Tortoise
$$= t_1 + t_2 + \cdots + t_n + \cdots$$

 $= \infty$?

Problem:

Can we add infinitely many numbers at the same time?

More precisely, given a sequence $\{a_n\}$, we can form the *formal sum*

$$a_1 + a_2 + a_3 + \dots = \sum_{n=1}^{\infty} a_n$$

which is called a series.

Question:

What does this formal sum represent? Does it have a value?

Example: What is

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \cdots$$

$$= \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} + \dots?$$

Geometric Interpretation

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} + \frac{1}{512} + \frac{1}{1024} + \cdots$$

$$= 1?$$

Sum of Areas

Total Area Covered

 $\frac{1}{2}$

$$1 - \frac{1}{2}$$

Sum of Areas

$$\frac{1}{2} + \frac{1}{4}$$

$$1 - \frac{1}{4}$$

Sum of Areas

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8}$$

$$1 - \frac{1}{8}$$

Sum of Areas

Total Area Covered

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}$$

$$1 - \frac{1}{16}$$

Sum of Areas

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32}$$

$$1 - \frac{1}{32}$$

Sum of Areas

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64}$$

$$1 - \frac{1}{64}$$

Sum of Areas

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128}$$

$$1 - \frac{1}{128}$$

Sum of Areas

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256}$$

$$1 - \frac{1}{256}$$

Sum of Areas

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128}$$
$$+ \frac{1}{256} + \frac{1}{512}$$

$$1 - \tfrac{1}{512}$$

Sum of Areas

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} + \frac{1}{512} + \frac{1}{1024}$$

$$1 - \tfrac{1}{1024}$$

Sum of Areas

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128}$$
$$+ \frac{1}{256} + \frac{1}{512} + \frac{1}{1024} + \dots + \frac{1}{2^k}$$

$$1 - \frac{1}{2^k}$$

Note:

$$\lim_{k \to \infty} \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^k} = \lim_{k \to \infty} \sum_{n=1}^k \frac{1}{2^n}$$

$$= \lim_{k \to \infty} 1 - \frac{1}{2^k}$$

$$= 1$$

Series

Definition: [Series]

Given a sequence $\{a_n\}$, the *formal* sum

$$a_1 + a_2 + a_3 + a_4 + \cdots + a_n + \cdots$$

is called a *series*. (The series is called *formal* because we have not yet given it a meaning numerically.)

The a_n 's are called the *terms* of the series. For each term a_n , the number n is called the *index* of the term.

We denote the series by

$$\sum_{n=1}^{\infty} a_n.$$

Convergent/Divergent Series

Definition: [Convergent Series]

Given a sequence $\{a_n\}=\{a_1,a_2,a_3,\ldots\}$, we define the kth partial sum S_k of the series $\sum\limits_{n=1}^\infty a_n$ by

$$S_k = a_1 + a_2 + \dots + a_k = \sum_{n=1}^k a_n.$$

We say that the series $\sum_{n=1}^{\infty} a_n$ converges if the sequence of partial sums $\{S_k\}$ converges. In this case, we write

$$\sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} S_k$$

Otherwise, we say that the series *diverges* and the sum has no defined value.

Example

Example:

Suppose $a_n = \frac{1}{2^n}$. We know that

$$S_k = \sum_{n=1}^k \frac{1}{2^n} = 1 - \frac{1}{2^k} \to 1.$$

Hence, $\sum_{n=1}^{\infty} \frac{1}{2^n}$ converges with

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = 1.$$

Why Use Limits?

Question: Why use limits?

Suppose $a_n = (-1)^{n+1}$. Then the formal sum looks like

$$a_1 + a_2 + a_3 + \dots = 1 + (-1) + 1 + (-1) + 1 + (-1) + \dots$$

We could parenthesize the formal sum as follows:

$$[1+(-1)]+[1+(-1)]+[1+(-1)]+\cdots=0+0+0+\cdots=0.$$

Alternatively, we could parenthesize the formal sum as:

$$1+[(-1)+1]+[(-1)+1]+[(-1)+1]+\cdots = 1+0+0+0+\cdots = 1.$$

Our result is ambiguous; the "sum" changes if we change the way we parenthesize the terms!

Why Use Limits?

Observe:

$$S_1 = 1$$

 $S_2 = 1 - 1 = 0$
 $S_3 = 1 - 1 + 1 = 1$
 $S_4 = 1 - 1 + 1 - 1 = 0$

We get

$$S_k = 1 + (-1) + 1 + \dots + (-1)^{k+1} = egin{cases} 1 & ext{if k is odd,} \ 0 & ext{if k is even.} \end{cases}$$

Thus, $\{S_k\} = \{1, 0, 1, 0, 1, 0, \cdots\}$ diverges.

Example

Example: Determine if the series

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$

converges or diverges.

Solution: Observe that

$$a_n = \frac{1}{n^2 + n} = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

so the series becomes

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right).$$

We have

$$S_k = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + \dots + (\frac{1}{k} - \frac{1}{k+1})$$

$$= 1 - (\frac{1}{2} - \frac{1}{2}) - (\frac{1}{3} - \frac{1}{3}) - (\frac{1}{4} - \frac{1}{4}) - \dots - (\frac{1}{k} - \frac{1}{k}) - \frac{1}{k+1}$$

$$= 1 - 0 - 0 - 0 - \dots - 0 - \frac{1}{k+1} = 1 - \frac{1}{k+1} \to 1$$