Geometric Series

Created by
Barbara Forrest and Brian Forrest

Geometric Series

Definition: [Geometric Series]

Let $r \in \mathbb{R}$. Then

$$
\sum_{n=0}^{\infty} r^{n}=1+r+r^{2}+r^{3}+\cdots
$$

is called a geometric series of radius r.
Problem: For which r does the geometric series $\sum_{n=0}^{\infty} r^{n}$ converge?
To answer this question, we must look at its sequence of partial sums:

$$
S_{k}=\sum_{n=0}^{k} r^{n}=1+r+r^{2}+\cdots+r^{k}
$$

Geometric Series

Problem: For which r does the series $\sum_{n=0}^{\infty} r^{n}$ converge?
Case 1: $r=1$

$$
S_{k}=1+1+1+\cdots+1=k+1
$$

Since $\left\{S_{k}\right\}=\{k+1\}$ diverges, the series $\sum_{n=0}^{\infty} 1^{n}$ diverges.

Geometric Series

Problem: For which r does the series $\sum_{n=0}^{\infty} r^{n}$ converge?
Case 2: $r=-1$

$$
S_{k}=1+(-1)+1+\cdots+(-1)^{k}= \begin{cases}1 & \text { if } k \text { is even } \\ 0 & \text { if } k \text { is odd }\end{cases}
$$

Since $\left\{S_{k}\right\}=\{1,0,1,0,1,0, \ldots\}$ diverges, $\sum_{n=0}^{\infty}(-1)^{n}$ diverges.

Geometric Series

Problem: For which r does the series $\sum_{n=0}^{\infty} r^{n}$ converge?
Case 3: $r \neq 1$

$$
\begin{aligned}
S_{k} & =1+r+r^{2}+\cdots+r^{k} \\
r S_{k} & =1+r^{2}+\cdots+r^{k}+r^{k+1} \\
\Rightarrow(1-r) S_{k} & =1-r^{k+1} \\
\Rightarrow S_{k} & =\frac{1-r^{k+1}}{1-r}
\end{aligned}
$$

Geometric Series

Problem: For which r does the series $\sum_{n=0}^{\infty} r^{n}$ converge?
Now

$$
\left|r^{k+1}\right| \rightarrow \begin{cases}0 & \text { if }|r|<1 \\ \infty & \text { if }|r|>1\end{cases}
$$

But if $S_{k}=\frac{1-r^{k+1}}{1-r}$,

$$
\lim _{k \rightarrow \infty} S_{k}= \begin{cases}\frac{1}{1-r} & \text { if }|r|<1 \\ \text { does not exist } & \text { if }|r| \geq 1\end{cases}
$$

Geometric Series

Theorem: [Geometric Series Test]

A geometric series $\sum_{n=0}^{\infty} r^{n}$ converges if and only if $|r|<1$.
Moreover, if $|r|<1$,

$$
\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}
$$

Example:

$$
\sum_{n=0}^{\infty} \frac{1}{2^{n}}=\frac{1}{1-\frac{1}{2}}=2
$$

