Divergence to ∞

Created by

Barbara Forrest and Brian Forrest

Divergence to ∞

Recall: We saw that the sequence

$$a_n = (-1)^{n+1}$$

diverged.

Question: Consider the sequence

 $a_n = n$.

Does the sequence converge?

Observation: The terms grow without bound!

Divergence to ∞

Definition: [Divergence to ∞]

We say that a sequence $\{a_n\}$ diverges to ∞ if for every M > 0 there exists an $N \in \mathbb{N}$ such that if $n \geq N$, then

$$a_n > M.$$

In this case, we write

 $\lim_{n\to\infty}a_n=\infty.$

Divergence to $-\infty$

Definition: [Divergence to $-\infty$]

We say that a sequence $\{a_n\}$ diverges to $-\infty$ if for every M < 0 there exists an $N \in \mathbb{N}$ such that if $n \geq N$, then

$$a_n < M$$
.

In this case, we write

 $\lim_{n \to \infty} a_n = -\infty.$

Remark: If $\lim_{n o \infty} a_n = \pm \infty$, the sequence does not converge.

Example

