Created by

Barbara Forrest and Brian Forrest

Problem:

Suppose that $a_n \to L$ and $b_n \to M$. What can we say about $c_n = 2a_n + b_n$?

We would hope that

 $2a_n + b_n M$ c_n

= 2L + M.

Theorem: [Arithmetic Rules for Limits of Sequences]

Let $\{a_n\}$ and $\{b_n\}$ be sequences. Assume that $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} b_n = M$. Then:

i) For any $c \in \mathbb{R}$, if $a_n = c$ for every n, then c = L.

ii) For any
$$c \in \mathbb{R}, \lim_{n o \infty} ca_n = cL.$$

iii)
$$\lim_{n \to \infty} (a_n + b_n) = L + M.$$

iv)
$$\lim_{n \to \infty} a_n b_n = LM.$$

v)
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{L}{M}$$
 if $M \neq 0$.

vi) If
$$a_n \ge 0$$
 for all n and if $\alpha > 0$, then $\lim_{n \to \infty} a_n^{\alpha} = L^{\alpha}$.

vii) For any
$$k \in \mathbb{N}, \lim_{n o \infty} a_{n+k} = L.$$

Proof of (ii):

For any $c \in \mathbb{R}$, if $\lim_{n \to \infty} a_n = L$, then $\lim_{n \to \infty} ca_n = cL$. **Case 1:** c = 0Let $c_n = c \cdot a_n$. Then $c_n = 0 \cdot a_n = 0$ for all $n \in \mathbb{N}$. So $c_n \to 0 = c \cdot L$.

Proof of (ii) continued:

For any $c\in\mathbb{R}$, if $\lim_{n
ightarrow\infty}a_n=L$, then $\lim_{n
ightarrow\infty}ca_n=cL.$

Case 2: $c \neq 0$

Let $\epsilon > 0$. Choose $N \in \mathbb{N}$ so that if $n \geq N$, then

$$|a_n - L| < \frac{\epsilon}{|c|}.$$

If $n \geq N$, then

$$|ca_n-cL| = |c||a_n-L$$

$$< |e| \frac{\epsilon}{|e|}$$

$$= \epsilon$$

Key Observation:

Error of $[c \cdot \text{Quantity}] pprox c \cdot \text{Error}$

Arithmetic of Limits

Proof of (iii): Assume that $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} b_n = M$. Then $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = L + M$.

Let $\epsilon > 0$. Choose $N_1 \in \mathbb{N}$ so that if $n \geq N_1$,

$$|a_n-L| < \frac{\epsilon}{2}.$$

Choose $N_2 \in \mathbb{N}$ so that if $n \geq N_2$,

$$\mid b_n - M \mid < rac{\epsilon}{2}.$$

Let $N_0 = \max\{N_1, N_2\}.$ If $n \geq N_0$

$$(a_n + b_n) - (L + M) \mid = \mid (a_n - L) + (b_n - M)$$

$$\leq \lfloor a_n - L \rceil + \lfloor b_n - M \rceil$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Key Observation:

Error of a Sum pprox Sum of the Errors

Limits of the Form $\frac{0}{0}$

Remark: Rule v) says that if $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} b_n = M$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{L}{M}$$

if $M \neq 0$.

However, if $\lim_{n o \infty} b_n = 0$, then $\lim_{n o \infty} rac{a_n}{b_n}$ may or may not exist.

Examples:

•
$$a_n = \frac{1}{n}, b_n = \frac{1}{n} \Rightarrow \frac{a_n}{b_n} = 1 \rightarrow 1.$$

• $a_n = \frac{1}{n}, b_n = \frac{1}{n^2} \Rightarrow \frac{a_n}{b_n} = \frac{\frac{1}{n}}{\frac{1}{n^2}} = n \rightarrow \infty$
• $a_n = \frac{1}{n^2}, b_n = \frac{1}{n} \Rightarrow \frac{a_n}{b_n} = \frac{\frac{1}{n^2}}{\frac{1}{n}} = \frac{1}{n} \rightarrow 0.$

Observation: Assume that $\lim_{n\to\infty} \frac{a_n}{b_n}$ exists and equals L, and $\lim_{n\to\infty} b_n = 0$. Then

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{a_n}{b_n} \cdot \lim_{n \to \infty} b_n = L \cdot 0 = 0.$$

Theorem:

Assume that $\lim_{n \to \infty} rac{a_n}{b_n}$ exists and that $\lim_{n \to \infty} b_n = 0.$ Then

 $\lim_{n \to \infty} a_n = 0.$