Arithmetic for Limits of Sequences I

Created by

Barbara Forrest and Brian Forrest

Arithmetic for Limits of Sequences

Problem:

Suppose that $a_{n} \rightarrow L$ and $b_{n} \rightarrow M$. What can we say about $c_{n}=2 a_{n}+b_{n}$?

We would hope that

$$
\begin{aligned}
c_{n} & \rightarrow 2 a_{n}+b_{n}^{M} \\
& =2 L+M
\end{aligned}
$$

Arithmetic for Limits of Sequences

Theorem: [Arithmetic Rules for Limits of Sequences]
Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences. Assume that $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=M$. Then:
i) For any $c \in \mathbb{R}$, if $a_{n}=c$ for every n, then $c=\boldsymbol{L}$.
ii) For any $c \in \mathbb{R}, \lim _{n \rightarrow \infty} c a_{n}=c L$.
iii) $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=L+M$.
iv) $\lim _{n \rightarrow \infty} a_{n} b_{n}=L M$.
v) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{L}{M}$ if $M \neq 0$.
vi) If $a_{n} \geq 0$ for all n and if $\alpha>0$, then $\lim _{n \rightarrow \infty} a_{n}^{\alpha}=L^{\alpha}$.
vii) For any $k \in \mathbb{N}, \lim _{n \rightarrow \infty} a_{n+k}=L$.

Arithmetic for Limits of Sequences

Proof of (ii):
For any $c \in \mathbb{R}$, if $\lim _{n \rightarrow \infty} a_{n}=L$, then $\lim _{n \rightarrow \infty} c a_{n}=c L$.
Case 1: $c=0$
Let $c_{n}=c \cdot a_{n}$. Then

$$
c_{n}=0 \cdot a_{n}=0
$$

for all $n \in \mathbb{N}$. So

$$
c_{n} \rightarrow 0=c \cdot L .
$$

Arithmetic for Limits of Sequences

Proof of (ii) continued:
For any $c \in \mathbb{R}$, if $\lim _{n \rightarrow \infty} a_{n}=L$, then $\lim _{n \rightarrow \infty} c a_{n}=c L$.
Case 2: $c \neq 0$
Let $\epsilon>\mathbf{0}$. Choose $N \in \mathbb{N}$ so that if $n \geq N$, then

$$
\left|a_{n}-L\right|<\frac{\epsilon}{|c|}
$$

If $n \geq N$, then

$$
\begin{aligned}
\left|c a_{n}-c L\right| & =\left|c \| a_{n}-L\right| \\
& <\operatorname{Le†} \frac{\epsilon}{\operatorname{Le†}} \\
& =\epsilon .
\end{aligned}
$$

Arithmetic for Limits of Sequences

Key Observation:

$$
\text { Error of }[c \cdot \text { Quantity }] \approx c \cdot \text { Error }
$$

Arithmetic of Limits

Proof of (iii): Assume that $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=M$. Then $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}=L+M$.

Let $\epsilon>0$. Choose $N_{1} \in \mathbb{N}$ so that if $n \geq N_{1}$,

$$
\left|a_{n}-L\right|<\frac{\epsilon}{2}
$$

Choose $N_{2} \in \mathbb{N}$ so that if $n \geq N_{2}$,

$$
\left|b_{n}-M\right|<\frac{\epsilon}{2} .
$$

Let $N_{0}=\max \left\{N_{1}, N_{2}\right\}$. If $n \geq N_{0}$

$$
\begin{aligned}
\left|\left(a_{n}+b_{n}\right)-(L+M)\right| & =\left|\left(a_{n}-L\right)+\left(b_{n}-M\right)\right| \\
& \leq \frac{a_{n}}{} L T+\perp b_{n}-M T \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

Arithmetic for Limits of Sequences

Key Observation:
Error of a Sum \approx Sum of the Errors

Limits of the Form $\frac{0}{0}$

Remark: Rule v) says that if $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=M$, then

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{L}{M}
$$

if $M \neq 0$.
However, if $\lim _{n \rightarrow \infty} b_{n}=0$, then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ may or may not exist.

Examples:

- $a_{n}=\frac{1}{n}, b_{n}=\frac{1}{n} \Rightarrow \frac{a_{n}}{b_{n}}=1 \rightarrow 1$.
- $a_{n}=\frac{1}{n}, b_{n}=\frac{1}{n^{2}} \Rightarrow \frac{a_{n}}{b_{n}}=\frac{\frac{1}{n}}{\frac{1}{n^{2}}}=n \rightarrow \infty$.
- $a_{n}=\frac{1}{n^{2}}, b_{n}=\frac{1}{n} \Rightarrow \frac{a_{n}}{b_{n}}=\frac{\frac{1}{n^{2}}}{\frac{1}{n}}=\frac{1}{n} \rightarrow 0$.

Limits of the Form $\frac{0}{0}$

Observation: Assume that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists and equals L, and $\lim _{n \rightarrow \infty} b_{n}=0$. Then

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} \cdot \lim _{n \rightarrow \infty} b_{n}=L \cdot 0=0
$$

Theorem:

Assume that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists and that $\lim _{n \rightarrow \infty} b_{n}=0$. Then

$$
\lim _{n \rightarrow \infty} a_{n}=0 .
$$

