Arithmetic for Limits of Sequences

Created by

Barbara Forrest and Brian Forrest

Limits of the Form $\frac{p(n)}{q(n)}$

Let

$$a_n = \frac{b_0 + b_1 n + b_2 n^2 + b_3 n^3 + \dots + b_j n^j}{c_0 + c_1 n + c_2 n^2 + \dots + c_k n^k}.$$

By factoring out n^j from the numerator and n^k from the denominator, and then rewriting the sequence as

$$a_n = \frac{n^j}{n^k} \left[\frac{\frac{b_0}{n^j} + \frac{b_1}{n^{j-1}} + \frac{b_2}{n^{j-2}} + \frac{b_3}{n^{j-3}} + \dots + b_j}{\frac{c_0}{n^k} + \frac{c_1}{n^{k-1}} + \frac{c_2}{n^{k-2}} + \dots + c_k} \right],$$

we can conclude that

$$\lim_{n o\infty}a_n=\left\{egin{array}{ll} rac{b_j}{c_k} & ext{if } j=k\ 0 & ext{if } j< k\ \infty & ext{if } j>k ext{ and } rac{b_j}{c_k}>0\ -\infty & ext{if } j>k ext{ and } rac{b_j}{c_k}<0. \end{array}
ight.$$

Examples

Example 4: Evaluate

$$\lim_{n\to\infty}\sqrt{n^2+n}-n.$$

Note:

i)
$$\lim_{n \to \infty} \sqrt{n^2 + n} - \lim_{n \to \infty} n = \infty - \infty$$
 has no meaning.

ii)
$$a_{100}=0.498756211,$$
 $a_{10^6}=0.499999875\Rightarrow \lim_{n\to\infty}\sqrt{n^2+n}-n=\frac{1}{2}?$

We have

$$\begin{array}{rcl} \sqrt{n^2 + n} - n & = & (\sqrt{n^2 + n} - n) \cdot \frac{\sqrt{n^2 + n} + n}{\sqrt{n^2 + n} + n} \\ \\ & = & \frac{(n^2 + n) - n^2}{\sqrt{n^2 + n} + n} \\ \\ & = & \frac{n}{\sqrt{n^2 + n} + n} \\ \\ & = & \frac{n}{n} \cdot \frac{1}{\sqrt{1 + \frac{1}{n} + 1}} = \frac{1}{\sqrt{1 + \frac{1}{n} + 1}} \to \frac{1}{2} \end{array}$$

Finding Limits for Recursive Sequences

Example 5:

Let $a_1=1$ and

$$a_{n+1} = \frac{1}{1+a_n}.$$

Note: It appears that $\{a_n\}$ converges.

Problem: What is

$$\lim_{n\to\infty} a_n$$
?

n	a_n	Decimal
1	1	1.0000000
2	$\frac{1}{2}$.5000000
3	$\frac{2}{3}$.6666666
4	2 2 3 3 5	.6000000
5	5/8	.6250000
6	$\frac{8}{13}$.6153846
7	$\frac{13}{21}$.6190476
8	$\frac{21}{34}$.6176470
9	$\frac{34}{55}$.6181818
10	$\frac{55}{89}$.6179775
11	$\frac{89}{144}$.6180555
12	$\frac{144}{233}$.6180257
13	$\frac{233}{377}$.6180371
14	$\frac{377}{610}$.6180327
15	$\frac{610}{987}$.6180344
16	$\frac{987}{1597}$.6180338

Finding Limits for Recursive Sequences

Solution: Assume that

$$\lim_{n\to\infty}a_n=L.$$

We have

$$L = \lim_{n \to \infty} a_{n+1}$$

$$= \lim_{n \to \infty} \frac{1}{1 + a_n}$$

$$= \frac{1}{1 + \lim_{n \to \infty} a_n}$$

$$= \frac{1}{1 + L}$$

Hence,

$$L = \frac{1}{1+L} \Rightarrow L^2 + L - 1 = 0 \Rightarrow L = \frac{-1 \pm \sqrt{5}}{2}.$$

Since each $a_n > 0$,

$$L = \frac{-1 + \sqrt{5}}{2} = 0.618033989\dots$$