Applications of computable model theory to computable analysis

Alexander Melnikov

Victoria University of Wellington

Waterloo, May 2013
Idea (v.d.Waerden, F. and S., Mal’cev, Rabin)

Computable mathematics should study computable mathematical objects up to computable isomorphisms.
The beginning of the story

Idea (v.d.Waerden, F. and S., Mal’cev, Rabin)

Computable mathematics should study *computable* mathematical objects up to *computable* isomorphisms.

This idea has been intensively used in:

- Computable algebra (Nerode, Ershov et al.)
The beginning of the story

Idea (v.d.Waerden, F. and S., Mal’cev, Rabin)

Computable mathematics should study computable mathematical objects up to computable isomorphisms.

This idea has been intensively used in:

- Computable algebra (Nerode, Ershov et al.)

- Computable model theory (Morley, Millar et al.)
The beginning of the story

Idea (v.d.Waerden, F. and S., Mal’cev, Rabin)

Computable mathematics should study *computable* mathematical objects up to *computable* isomorphisms.

This idea has been intensively used in:

- Computable algebra (Nerode, Ershov et al.)
- Computable model theory (Morley, Millar et al.)
- Numbering theory (Ershov, Lachlan et al.)
The beginning of the story

Idea (v.d.Waerden, F. and S., Mal’cev, Rabin)

Computable mathematics should study computable mathematical objects up to computable isomorphisms.

This idea has been intensively used in:

- Computable algebra (Nerode, Ershov et al.)
- Computable model theory (Morley, Millar et al.)
- Numbering theory (Ershov, Lachlan et al.)
- Feasible model theory (Downey, Remmel et al.)
Computable mathematics should study computable mathematical objects up to computable isomorphisms.

This idea has been intensively used in:

- Computable algebra (Nerode, Ershov et al.)
- Computable model theory (Morley, Millar et al.)
- Numbering theory (Ershov, Lachlan et al.)
- Feasible model theory (Downey, Remmel et al.)

Rabin and Mal’cev did not do much of computable analysis.
The beginning of the story

Idea (Rooted in history of comp. analysis)
We should have an adequate notion of equivalence for different computability notions on uncountable spaces.
The beginning of the story

Idea (Rooted in history of comp. analysis)

We should have an adequate notion of equivalence for different computability notions on uncountable spaces.

This idea gave rise to:

- [Weihrauch, Pour-El, Brattka et al.] The theory of equivalent computable structures on spaces.
The beginning of the story

Idea (Rooted in history of comp. analysis)

We should have an adequate notion of equivalence for different computability notions on uncountable spaces.

This idea gave rise to:

- [Weihrauch, Pour-El, Brattka et al.] The theory of equivalent computable structures on spaces.

- [Pour-El and Richards] The notion of isometric computable structures on spaces (to be defined shortly).
The beginning of the story

Idea (Rooted in history of comp. analysis)

We should have an adequate notion of equivalence for different computability notions on uncountable spaces.

This idea gave rise to:

- [Weihrauch, Pour-El, Brattka et al.] The theory of equivalent computable structures on spaces.

- [Pour-El and Richards] The notion of isometric computable structures on spaces (to be defined shortly).

These notions have been developed almost independently from computable model theory and computable algebra.
The beginning of the story

The terminology in analysis is different, but the idea is the same as in computable model theory.
The beginning of the story

The terminology in analysis is different, but the idea is the same as in computable model theory.

Based on this idea and similar ideas, we aim to develop a new approach to computable analystis.
In this talk, a **space** is a separable metric structure

\[(M, d, F_1, \ldots, F_n, \ldots),\]

where \(d\) is a metric, and \(F_1, \ldots, F_n, \ldots\) are distinguished points or operations on \(M\).
Definitions

Definition
In this talk, a space is a separable metric structure

\((M, d, F_1, \ldots, F_n, \ldots)\),

where \(d\) is a metric, and \(F_1, \ldots, F_n, \ldots\) are distinguished points or operations on \(M\).

Example
Typical signatures are:

- normed group \((d, +, 0)\) (here \(\|x\| = d(0, x))\);
Definitions

Definition
In this talk, a **space** is a separable metric structure

\[(M, d, F_1, \ldots, F_n, \ldots)\],

where \(d\) is a metric, and \(F_1, \ldots, F_n, \ldots\) are distinguished points or operations on \(M\).

Example
Typical signatures are:

- normed group \((d, +, 0)\) (here \(\|x\| = d(0, x))\);
- Banach space \((d, +, 0, (r)_{r \in \mathbb{Q}})\) (\(r\cdot\) is scalar multiplication by \(r \in \mathbb{Q}\)).
Definitions

Definition

In this talk, a **space** is a separable metric structure

\[(M, d, F_1, \ldots, F_n, \ldots),\]

where \(d\) is a metric, and \(F_1, \ldots, F_n, \ldots\) are distinguished points or operations on \(M\).

Example

Typical signatures are:

- normed group \((d, +, 0)\) (here \(\|x\| = d(0, x)\));
- Banach space \((d, +, 0, (r \cdot)_{r \in \mathbb{Q}})\) \((r \cdot\) is scalar multiplication by \(r \in \mathbb{Q}\));
- Banach algebra \((d, +, 0, 1, \times, (r \cdot)_{r \in \mathbb{Q}})\);
Definitions

Definition
In this talk, a space is a separable metric structure

\[(M, d, F_1, \ldots, F_n, \ldots)\],

where \(d\) is a metric, and \(F_1, \ldots, F_n, \ldots\) are distinguished points or operations on \(M\).

Example
Typical signatures are:

- normed group \((d, +, 0)\) (here \(\|x\| = d(0, x)\));
- Banach space \((d, +, 0, (r \cdot)_{r \in \mathbb{Q}})\) (\(r \cdot\) is scalar multiplication by \(r \in \mathbb{Q}\));
- Banach algebra \((d, +, 0, 1, \times, (r \cdot)_{r \in \mathbb{Q}})\);
- Whatever (lattice operations, another metric, inner product, or your favorite collection of operators.)
A dense computable sequence \((q_i)_{i\in\mathbb{N}}\) in a space \(\mathcal{M}\) is a **computable structure** on \(\mathcal{M}\) if:

1. \(d(q_i, q_j)\) is a computable real uniformly in \(i\) and \(j\), and
2. the distinguished points and operations are uniformly computable in this structure.
A dense computable sequence \((q_i)_{i \in \mathbb{N}}\) in a space \(\mathcal{M}\) is a **computable structure** on \(\mathcal{M}\) if:

1. \(d(q_i, q_j)\) is a computable real uniformly in \(i\) and \(j\), and
2. the distinguished points and operations are uniformly computable in this structure.

Our definition depends on the choice of signature.
Example (The reals)

Let \((q_i)_{i \in \mathbb{N}}\) be an effective listing of rationals and \(\gamma\) a real. For any \(\gamma\), the collection \((q_i + \gamma)_{i \in \mathbb{N}}\) is a computable structure on \((\mathbb{R}, d)\), where \(d\) is the Euclidean metic.
Example (The reals)

Let \((q_i)_{i \in \mathbb{N}}\) be an effective listing of rationals and \(\gamma\) a real.

- For any \(\gamma\), the collection \((q_i + \gamma)_{i \in \mathbb{N}}\) is a computable structure on \((\mathbb{R}, d)\), where \(d\) is the Euclidean metric.

- Now consider \((\mathbb{R}, d, 0, +)\). The collection \((q_i + \gamma)_{i \in \mathbb{N}}\) is a computable structure on \((\mathbb{R}, d, 0, +)\) only if \(\gamma\) is a computable real.
Example (The reals)

Let \((q_i)_{i \in \mathbb{N}}\) be an effective listing of rationals and \(\gamma\) a real.

- For any \(\gamma\), the collection \((q_i + \gamma)_{i \in \mathbb{N}}\) is a computable structure on \((\mathbb{R}, d)\), where \(d\) is the Euclidean metric.

- Now consider \((\mathbb{R}, d, 0, +)\). The collection \((q_i + \gamma)_{i \in \mathbb{N}}\) is a computable structure on \((\mathbb{R}, d, 0, +)\) only if \(\gamma\) is a computable real.

Example (Continuous functions)

- Polynomials with rational coefficients make \((C[0, 1], \text{sup})\) a computable Banach algebra.
Elementary examples

Example (The reals)

Let \((q_i)_{i \in \mathbb{N}}\) be an effective listing of rationals and \(\gamma\) a real.

- For any \(\gamma\), the collection \((q_i + \gamma)_{i \in \mathbb{N}}\) is a computable structure on \((\mathbb{R}, d)\), where \(d\) is the Euclidean metric.

- Now consider \((\mathbb{R}, d, 0, +)\). The collection \((q_i + \gamma)_{i \in \mathbb{N}}\) is a computable structure on \((\mathbb{R}, d, 0, +)\) only if \(\gamma\) is a computable real.

Example (Continuous functions)

- Polynomials with rational coefficients make \((C[0, 1], \text{sup})\) a computable Banach algebra.

- A non-computable “shift” keeps \((C[0, 1], \text{sup})\) a computable metric space, but not a computable Banach space.
Use your intuition to define what is a computable map between computable spaces.
Use your intuition to define what is a computable map between computable spaces.

Definition (M., Pour-El and Richards for Banach spaces.)

A space \mathcal{M} is *computably categorical* if every two computable structures on \mathcal{M} are equivalent up to a computable map between completions of these computable structures.
Definitions

Use your intuition to define what is a computable map between computable spaces.

Definition (M., Pour-El and Richards for Banach spaces.)

A space \mathcal{M} is **computably categorical** if every two computable structures on \mathcal{M} are equivalent up to a computable map between completions of these computable structures.

Please draw a picture.
Use your intuition to define what is a computable map between computable spaces.

Definition (M., Pour-El and Richards for Banach spaces.)

A space \mathcal{M} is **computably categorical** if every two computable structures on \mathcal{M} are equivalent up to a computable map between **completions** of these computable structures.

Please draw a picture.

Example

The structures $(q_i)_{i \in \mathbb{N}}$ and $(q_i + \gamma)_{i \in \mathbb{N}}$ on the space (\mathbb{R}, d) agree up to the isometry $x \rightarrow x + \gamma$.
The problems

Problem
Which spaces are computably categorical?

Problem
If a space is not computably categorical, how many computable structures may it have (up to computable automorphisms)?
Known facts:

- Every separable Hilbert space \((H, d, +, (r \cdot r))\) is computably categorical. [M., 2012] So is the associated metric space \((H, d)\).

- The Banach space \(l_1\) is not computably categorical. [M., 2012] So is the associated metric space.

- There exists a Polish space having exactly two computable structures (up to a computable surj. self-isometry). [Khoussainov and M., unpublished]

- Cantor space \((C, d)\) with the usual ultra-metric is computably categorical. The Urysohn space is computably categorical. [M., 2012]

- The space \((C[0,1], \sup)\) with the usual pointwise supremum metric is not computably categorical.
Known facts:

- [Pour-El, Richards] Every separable Hilbert space \((H, d, +, (r \cdot)_r \in Q)\) is computably categorical. [M., 2012] So is the associated metric space \((H, d)\).

- [Khoussainov and M., unpublished] There exists a Polish space having exactly two computable structures (up to a computable surj. self-isometry).

- [M., 2012] Cantor space \((C, d)\) with the usual ultra-metric is computably categorical. The Urysohn space is computably categorical.

- [M., 2012] The space \((C[0,1], \sup)\) with the usual pointwise supremum metric is not computably categorical.
Known facts:

- [Pour-El, Richards] Every separable Hilbert space $(H, d, +, (r \cdot)_{r \in \mathbb{Q}})$ is computably categorical. [M., 2012] So is the associated metric space (H, d).

- [Pour-El, Richards] The Banach space l_1 is not computably categorical. [M., 2012] So is the associated metric space.
Known facts:

- [Pour-El, Richards] Every separable Hilbert space \((H, d, +, (r \cdot)_r \in \mathbb{Q})\) is computably categorical. [M., 2012] So is the associated metric space \((H, d)\).

- [Pour-El, Richards] The Banach space \(l_1\) is not computably categorical. [M., 2012] So is the associated metric space.

- [Khoussainov and M., unpublished] There exists a Polish space having exactly two computable structures (up to a computable surj. self-isometry).
Known facts:

- [Pour-El, Richards] Every separable Hilbert space \((H, d, +, (r \cdot)_{r \in Q})\) is computably categorical. [M., 2012] So is the associated metric space \((H, d)\).

- [Pour-El, Richards] The Banach space \(l_1\) is not computably categorical. [M., 2012] So is the associated metric space.

- [Khoussainov and M., unpublished] There exists a Polish space having exactly two computable structures (up to a computable surj. self-isometry).

- [M., 2012] Cantor space \((C, d)\) with the usual ultra-metric is computably categorical. The Urysohn space is computably categorical.
Known facts:

- [Pour-El, Richards] Every separable Hilbert space $(H, d, +, (r·)_{r \in \mathbb{Q}})$ is computably categorical. [M., 2012] So is the associated metric space (H, d).

- [Pour-El, Richards] The Banach space l_1 is not computably categorical. [M., 2012] So is the associated metric space.

- [Khoussainov and M., unpublished] There exists a Polish space having exactly two computable structures (up to a computable surj. self-isometry).

- [M., 2012] Cantor space (C, d) with the usual ultra-metric is computably categorical. The Urysohn space is computably categorical.

- [M, 2012] The space $(C[0, 1], sup)$ with the usual pointwise supremum metric is not computably categorical.
The space $C[0,1]$

Theorem (M., Ng)

The space $(C[0,1], sup)$ has infinitely many structures pairwise non-equivalent up to automorphisms.
The space $C[0,1]$

Theorem (M., Ng)

The space $(C[0,1], \text{sup})$ has infinitely many structures pairwise non-equivalent up to automorphisms.

(The first main idea)

There is a computable structure on $(C[0,1], \text{sup})$ such that the pointwise $+$ is not computable in this structure (M., 2012). We construct a structure with this property which is additionally “Δ^0_2-isometric” (in some restricted sense) to the standard computable structure.
The space $C[0,1]$

Theorem (M., Ng)

The space $(C[0,1], sup)$ has infinitely many structures pairwise non-equivalent up to automorphisms.

(The first main idea)

There is a computable structure on $(C[0,1], sup)$ such that the pointwise $+$ is not computable in this structure (M., 2012). We construct a structure with this property which is additionally “Δ^0_2-isometric” (in some restricted sense) to the standard computable structure.

(The second main idea)

We take Goncharov’s sufficient condition for a countable structure to have comp. dim. ω, and then merge Goncharov’s strategy with a certain analytic requirement.
A closer look at \((C[0,1], \text{sup})\)

(Recall the first main idea)

There is a computable structure on \((C[0,1], \text{sup})\) such that \(+\) is \textbf{not} computable in this structure. (M., 2012)
A closer look at \((C[0,1], \sup)\)

(Recall the first main idea)

There is a computable structure on \((C[0, 1], \sup)\) such that \(+\) is not computable in this structure. (M., 2012)

What if we add \(+\) into the signature, and also \((r \cdot)_r \in Q\)? (Make it a Banach space!)
A closer look at \((C[0,1], \sup)\)

(Recall the first main idea)

There is a computable structure on \((C[0,1], \sup)\) such that \(+\) is not computable in this structure. (M., 2012)

What if we add \(+\) into the signature, and also \((r \cdot)_{r \in Q}\)? (Make it a Banach space!)

Theorem (M., Ng)

The Banach space \((C[0,1], \sup, +, (r \cdot)_{r \in Q})\) is not computably categorical.
A closer look at \((C[0,1], \sup)\)

(Recall the first main idea)

There is a computable structure on \((C[0,1], \sup)\) such that \(+\) is \textbf{not} computable in this structure. (M., 2012)

What if we add \(\,+\) into the signature, and also \((r \cdot)_{r \in Q}\)? (Make it a Banach space!)

Theorem (M., Ng)

The Banach space \((C[0,1], \sup, +, (r \cdot)_{r \in Q})\) is \textbf{not} computably categorical.

Proof idea.

Make the pointwise multiplication \(\times\) \text{ non-computable in your structure.}
What if we also add \times into the signature? (Make it a Banach algebra!)

Theorem (M., Ng)

The Banach algebra $(C[0,1], \sup, +, (r \cdot))$ with $r \in \mathbb{Q}$, \times is not computably categorical.

Fact (M., Ng)

There is a distinguished point which, when also added into the signature, makes the Banach algebra $C[0,1]$ computably categorical.

Proof idea.

We can define polynomials with rational coefficients using the function $f(x) = x$.
The space $\mathbb{C}[0,1]$

What if we also add \times into the signature? (Make it a Banach algebra!)

Theorem (M., Ng)

The Banach algebra $(\mathbb{C}[0,1], \text{sup}, +, (r \cdot)_{r \in \mathbb{Q}}, \times)$ is not computably categorical.

Fact (M., Ng)

There is a distinguished point which, when also added into the signature, makes the Banach algebra $\mathbb{C}[0,1]$ computably categorical.

Proof idea.

We can define polynomials with rational coefficients using the function $f(x) = x$.
What if we also add \times into the signature? (Make it a Banach algebra!)

Theorem (M., Ng)

The Banach algebra $(C[0, 1], \text{sup}, +, (r \cdot)_{r \in \mathbb{Q}}, \times)$ is not computably categorical.

Fact (M., Ng)

There is a distinguished point which, when also added into the signature, makes the Banach algebra $C[0, 1]$ computably categorical.
The space $\mathbb{C}[0,1]$

What if we also add \times into the signature? (Make it a Banach algebra!)

Theorem (M., Ng)

The Banach algebra $(\mathbb{C}[0,1], \text{sup}, +, (r \cdot)_r \in \mathbb{Q}, \times)$ is not computably categorical.

Fact (M., Ng)

There is a distinguished point which, when also added into the signature, makes the Banach algebra $\mathbb{C}[0,1]$ computably categorical.

Proof idea.

We can define polynomials with rational coefficients using the function $f(x) = x$.

Alexander Melnikov
Applications of computable model theory to computable analysis
If a computable structure on $C[0, 1]$ does not compute polynomials with rational coefficients, we get a pathology.
Intermediate conclusions

If a computable structure on \(C[0, 1] \) does not compute polynomials with rational coefficients, we get a pathology.

Our studies are related to intrinsic computability of operations on metric spaces. (The question of when an operation is computable in every computable structure on the space.)
Recall:

Idea

The complexity of a computable object is reflected in the complexity of isomorphisms/automorphisms of the object.

Recall also we had an application of Δ^0_2 isometries to the number of computable structures on $\mathbb{C}[0, 1]$.

(Ash, Goncharov, Knight, and many others)

We should study computable structures categorical relative to an oracle.
In computable model theory, Δ^0_n-isomorphisms have been studied by various authors:

- Well-orderings (Ash)
- Linear orders (McCoy, Downey)
- Boolean algebras (Knight, McCoy, Harris)
- Fields (Miller, Kudinov)
- Abelian groups (Barker, Morozov, Harizanov, Calvert, Downey, M.)

I've not seen any similar research in computable analysis, except for...
In computable model theory, Δ^0_n-isomorphisms have been studied by various authors:

- Well-orderings (Ash), linear orders (McCoy, Downey)
In computable model theory, Δ^0_n-isomorphisms have been studied by various authors:

- Well-orderings (Ash), linear orders (McCoy, Downey)
- Boolean algebras (Knight, McCoy, Harris)
In computable model theory, Δ^0_n-isomorphisms have been studied by various authors:

- Well-orderings (Ash), linear orders (McCoy, Downey)
- Boolean algebras (Knight, McCoy, Harris)
- Fields (Miller, Kudinov)
In computable model theory, Δ_0^n-isomorphisms have been studied by various authors:

- Well-orderings (Ash), linear orders (McCoy, Downey)
- Boolean algebras (Knight, McCoy, Harris)
- Fields (Miller, Kudinov)
- Abelian groups (Barker, Morozov, Harizanov, Calvert, Downey, M.)
In computable model theory, Δ^0_n-isomorphisms have been studied by various authors:

- Well-orderings (Ash), linear orders (McCoy, Downey)

- Boolean algebras (Knight, McCoy, Harris)

- Fields (Miller, Kudinov)

- Abelian groups (Barker, Morozov, Harizanov, Calvert, Downey, M.)

I’ve not seen any similar research in computable analysis, except for...
Theorem (M. and Nies)

Every compact computable metric space is Δ^0_3-categorical.

It means that we can build an isometry with a help of \emptyset''. In fact, \emptyset'' can be improved to low relative to \emptyset', but provably cannot be improved to \emptyset'. Nies and I also showed that every compact c.m.s. has a c.e. Scott family consisting of Π^2_2 computable infinitary formulas. (A compact c.m.s. can be described by a single computable Σ^3_3 infinitary Scott sentence.) Although we both feel this fact is closely related to (relative) Δ^0_3-categoricity, we don't know why and how exactly.
Theorem (M. and Nies)

Every compact computable metric space is Δ^0_3-categorical.

It means that we can build an isometry with a help of $0''$.
Theorem (M. and Nies)

Every compact computable metric space is Δ^0_3-categorical.

It means that we can build an isometry with a help of $0''$.

In fact, $0''$ can be improved to *low relative to* $0'$, but provably *can not* be improved to $0'$.
Theorem (M. and Nies)

Every compact computable metric space is Δ^0_3-categorical.

It means that we can build an isometry with a help of $0''$.

In fact, $0''$ can be improved to *low relative to $0'$*, but provably *can not* be improved to $0'$.

Nies and I also showed that every compact c.m.s. has a c.e. Scott family consisting of Π_2 *computable infinitary formulas*. (A compact c.m.s. can be described by a single computable Σ_3 infinitary Scott sentence.)
Theorem (M. and Nies)

Every compact computable metric space is Δ^0_3-categorical.

It means that we can build an isometry with a help of $0''$.

In fact, $0''$ can be improved to *low relative to $0'$*, but provably can not be improved to $0'$.

Nies and I also showed that every compact c.m.s. has a c.e. Scott family consisting of Π_2 computable infinitary formulas. (A compact c.m.s. can be described by a single computable Σ_3 infinitary Scott sentence.)

Although we both feel this fact is closely related to (relative) Δ^0_3-categoricity, we don’t know why and how exactly.
Problem

Find a space which is computably categorical in the signature of Banach spaces, but not computably categorical as a metric space.
Lots of problems

Problem

Find a space which is computably categorical in the signature of Banach spaces, but not computably categorical as a metric space.

Problem

What can be said about relative computable (Δ^0_n-) categoricity and intrinsic computability of relations and operations? How is it related to infinitary logic? What is the right language to use?

I have many more problems... This area is indeed wide open! Everyone is welcome.
Lots of problems

Problem
Find a space which is computably categorical in the signature of Banach spaces, but not computably categorical as a metric space.

Problem
What can be said about relative computable (Δ^0_n-) categoricity and intrinsic computability of relations and operations? How is it related to infinitary logic? What is the right language to use?

I have many more problems... This area is indeed wide open! Everyone is welcome.
Bol’shoe

SPASIBO!