ON MINOR-CLOSED CLASSES OF MATROIDS WITH EXPONENTIAL GROWTH RATE

JIM GELEEN AND PETER NELSON

Abstract. Let M be a minor-closed class of matroids that does not contain arbitrarily long lines. The growth rate function, $h : \mathbb{N} \to \mathbb{N}$ of M is given by

$$h(n) = \max \{|M| : M \in M \text{ is simple, and } r(M) \leq n\}.$$

The Growth Rate Theorem shows that there is an integer c such that either:

1. $h(n) \leq cn$ for all $n \geq 0$, or

2. $(n+1)/2 \leq h(n) \leq cn^2$, or there is a prime-power q such that $q^{n-1}/q-1 \leq h(n) \leq cq^n$; this separates classes into those of linear density, quadratic density, and base-q exponential density. For classes of base-q exponential density that contain no (q^2+1)-point line, we prove that $h(n) = q^{n-1}/q-1$ for all sufficiently large n. We also prove that, for classes of base-q exponential density that contain no (q^2+q+1)-point line, there exists $k \in \mathbb{N}$ such that $h(n) = q^{n+k-1}/q-1 - q^{2k-1}/q-1$ for all sufficiently large n.

1. Introduction

We prove a refinement of the Growth Rate Theorem for certain exponentially dense classes. We call a class of matroids minor-closed if it is closed under both minors and isomorphism. The growth rate function, $h_M : \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ for a class M of matroids is defined by

$$h_M(n) = \max\{|M| : M \in M \text{ is simple, and } r(M) \leq n\}.$$

The following striking theorem summarizes the results of several papers, [1,2,4].

Theorem 1.1 (Growth Rate Theorem). Let M be a minor-closed class of matroids, not containing all simple rank-2 matroids. Then there is an integer c such that either:

1. $h_M(n) \leq cn$ for all $n \geq 0$, or

Date: April 5, 2012.

1991 Mathematics Subject Classification. 05B35.

Key words and phrases. matroids, growth rates.

This research was partially supported by a grant from the Office of Naval Research [N00014-10-1-0851].
(2) \(\binom{n+1}{2} \leq h_M(n) \leq cn^2 \) for all \(n \geq 0 \), and \(M \) contains all graphic matroids, or

(3) there is a prime power \(q \) such that \(\frac{q^n - 1}{q-1} \leq h_M(n) \leq cq^n \) for all \(n \geq 0 \), and \(M \) contains all \(\text{GF}(q) \)-representable matroids.

In particular, the theorem implies that \(h_M(n) \) is finite for all \(n \) if and only if \(M \) does not contain all simple rank-2 matroids. If \(M \) is a minor-closed class satisfying (3), then we say that \(M \) is \textit{base-} \(q \) \textit{exponentially dense}. Our main theorems precisely determine, for many such classes, the eventual value of the growth rate function:

Theorem 1.2. Let \(q \) be a prime power. If \(M \) is a base- \(q \) exponentially dense minor-closed class of matroids such that \(U_{2,q^2+2} \notin M \), then

\[
h_M(n) = \frac{q^n - 1}{q-1}
\]

for all sufficiently large \(n \).

Consider, for example, the class \(M \) of matroids with no \(U_{2,\ell+2} \)-minor, where \(\ell \geq 2 \) is an integer. By the Growth Rate Theorem, this class is base- \(q \) exponentially dense, where \(q \) is the largest prime-power not exceeding \(\ell \). Clearly \(q^2 > \ell \), so, by Theorem 1.2, \(h_M(n) = \frac{q^n - 1}{q-1} \) for all large \(n \). This special case is the main result of [3], which essentially also contains a proof of Theorem 1.2.

Theorem 1.3. Let \(q \) be a prime power. If \(M \) is a base- \(q \) exponentially dense minor-closed class of matroids such that \(U_{2,q^2+q+1} \notin M \), then there is an integer \(k \geq 0 \) such that

\[
h_M(n) = \frac{q^{n+k} - 1}{q-1} - q^{2k} - 1
\]

for all sufficiently large \(n \).

Consider, for example, any proper minor-closed subclass \(M \) of the \(\text{GF}(q^2) \)-representable matroids that contains all \(\text{GF}(q) \)-representable matroids. Such classes are all base- \(q \) exponentially dense and do not contain \(U_{2,q^2+2} \), so Theorem 1.3 applies; this special case is the main result of [8].

If the hypothesis of Theorem 1.3 is weakened to allow \(U_{2,q^2+q+1} \in M \), then the conclusion no longer holds. Consider the class \(M_1 \) defined to be the set of truncations of all \(\text{GF}(q) \)-representable matroids; note that \(U_{2,q^2+q+2} \notin M_1 \) and \(h_{M_1}(n) = \frac{q^{n+1} - 1}{q-1} \) for all \(n \geq 2 \).

More generally, for each \(k \geq 0 \), if \(M_k \) is the set of matroids obtained from \(\text{GF}(q) \)-representable matroids by applying \(k \) truncations, then
h_M(n) = \frac{2^{n+k-1}}{q-1} for all n ≥ 2. This expression differs from that in Theorem 1.3 by only the constant \(q^{2k-1}_{q^2-1}\). It is conjectured [8,9] that, for each k, these are the extremes in a small spectrum of possible growth rate functions:

Conjecture 1.4. Let \(q\) be a prime power, and \(\mathcal{M}\) be a base-\(q\) exponentially dense minor-closed class of matroids. There exist integers \(k\) and \(d\) with \(k ≥ 0\) and \(0 ≤ d ≤ q^{2k-1}_{q^2-1}\), such that \(h_M(n) = \frac{q^{n+k-1}}{q-1} - qd\) for all sufficiently large \(n\).

We conjecture further that, for every allowable \(q\), \(k\) and \(d\), there exists a minor-closed class with the above as its eventual growth rate function.

There is a stronger conjecture [9] regarding the exact structure of the extremal matroids. For a non-negative integer \(k\), a \(k\)-element projection of a matroid \(M\) is a matroid of the form \(N/C\), where \(N\setminus C = M\), and \(C\) is a \(k\)-element set of \(N\).

Conjecture 1.5. Let \(q\) be a prime power, and \(\mathcal{M}\) be a base-\(q\) exponentially dense minor-closed class of matroids. There exists an integer \(k ≥ 0\) such that, if \(M ∈ \mathcal{M}\) is a simple matroid of sufficiently large rank with \(|M| = h_M(r(M))\), then \(M\) is the simplification of a \(k\)-element projection of a projective geometry over \(\text{GF}(q)\).

We will show, as was observed in [9], that this conjecture implies the previous one; see Lemma 3.1.

2. Preliminaries

A matroid \(M\) is called \((q, k)\)-full if

\[ε(M) ≥ \frac{q^{r(M)+k-1}}{q-1} - q^{2k-1}_{q^2-1}; \]

moreover, if strict inequality holds, \(M\) is \((q, k)\)-overfull.

Our proof of Theorem 1.3 follows a strategy similar to that in [8]; we show that, for any integer \(n > 0\), every \((q, k)\)-overfull matroid in \(\text{EX}(U_2,q^2,q+1)\), with sufficiently large rank, contains a \((q, k + 1)\)-full rank-\(n\) minor. The Growth Rate Theorem tells us that a given base-\(q\) exponentially dense minor-closed class cannot contain \((q, k)\)-full matroids for arbitrarily large \(k\), so this gives the result. Theorem 1.2 is easier and will follow along the way.

We follow the notation of Oxley [10]; flats of rank 1, 2 and 3 are respectively points, lines and planes of a matroid. If \(M\) is a matroid, and \(X, Y ⊆ E(M)\), then \(\cap_M(X, Y) = r_M(X) + r_M(Y) − r_M(X \cup Y)\)
is the local connectivity between X and Y. If $\cap_M(X,Y) = 0$, then X and Y are skew in M, and if \mathcal{X} is a collection of sets in M such that each $X \in \mathcal{X}$ is skew to the union of the sets in $\mathcal{X} - \{X\}$, then \mathcal{X} is a mutually skew collection of sets. A pair (F_1, F_2) of flats in M is modular if $\cap_M(F_1, F_2) = r_M(F_1 \cap F_2)$, and a flat F of M is modular if, for each flat F' of M, the pair (F, F') is modular. In a projective geometry each pair of flats is modular and, hence, each flat is modular.

For a matroid M, we write $|M|$ for $|E(M)|$, and $\varepsilon(M)$ for $|\text{si}(M)|$, the number of points in M. Thus, $h_M(n) = \max(\varepsilon(M) : M \in \mathcal{M}, r(M) \leq n)$. Two matroids are equal up to simplification if their simplifications are isomorphic. We let $EX(M)$ denote the set of matroids with no M-minor; Theorems 1.2 and 1.3 apply to subclasses of $EX(U_{2,q^2+1})$ and $EX(U_{2,q^2+q+1})$ respectively. The following theorem of Kung [5] bounds the density of a matroid in $EX(U_{2,\ell+2})$:

Theorem 2.1. Let $\ell \geq 2$ be an integer. If $M \in EX(U_{2,\ell+2})$, then $\varepsilon(M) \leq \frac{\ell^{r(M)} - 1}{\ell - 1}$.

The next result is an easy application of the Growth Rate Theorem.

Lemma 2.2. There is a real-valued function $\alpha_{2,2}(n, \beta, \ell)$ so that, for any integers $n \geq 1$ and $\ell \geq 2$, and real number $\beta > 1$, if $M \in EX(U_{2,\ell+2})$ is a matroid such that $\varepsilon(M) \geq \alpha_{2,2}(n, \beta, \ell)\beta^{r(M)}$, then M has a $PG(n - 1, q)$-minor for some $q > \beta$.

The following lemma was proved in [8]:

Lemma 2.3. Let λ, μ be real numbers with $\lambda > 0$ and $\mu > 1$, let $t \geq 0$ and $\ell \geq 2$ be integers, and let A and B be disjoint sets of elements in a matroid $M \in EX(U_{2,\ell+2})$ with $r_M(B) \leq t < r(M)$ and $\varepsilon(M|A) > \lambda \mu^{t\lambda(A)}$. Then there is a set $A' \subseteq A$ that is skew to B and satisfies $\varepsilon(M|A') > \lambda (\frac{\mu - 1}{t})^t \mu^{t\lambda(A')}$.

3. **Projections**

Recall that a k-element projection of a matroid M is a matroid of the form N/C, where C is a k-element set of a matroid N satisfying $N \setminus C = M$.

In this section we are concerned with projections of projective geometries. Consider a k-element set C in a matroid N such that $N \setminus C = PG(n + k - 1, q)$ and let $M = N/C$. Thus M is a k-element projection of $PG(n + k - 1, q)$. Below are easy observations that we use freely.

- If C is not independent, then M is a $(k - 1)$-element projection of $PG(n + k - 1, q)$.

• If C is not coindependent, then M is a $(k-1)$-element projection of $\text{PG}(n + k - 1, q)$.

• If C is not closed in N, then M is, up to simplification, a $(k-1)$-element projection of $\text{PG}(n + k - 2, q)$.

• M has a $\text{PG}(r(M) - 1, q)$-restriction.

Our next result gives the density of projections of projective geometries; given such a projection M, this density is determined to within a small range by the minimum k for which M is a k-element projection. As mentioned earlier, this lemma also tells us that Conjecture 1.5 implies Conjecture 1.4.

Lemma 3.1. Let q be a prime power, and $k \geq 0$ be an integer. If N is a matroid, and C is a rank-k flat of N such that $N \setminus C \cong \text{PG}(r(N) - 1, q)$, then $\varepsilon(N/C) = \varepsilon(N \setminus C) - qd$ for some $d \in \{0, 1, \ldots, \frac{q^{2k-1}}{q^2-1}\}$.

Proof. Each point P of N/C is a flat of the projective geometry $N \setminus C$, so $|P| = \frac{q^{N(P)-1}}{q-1} = 1 + q\frac{q^{N(P)-1}-1}{q-1}$. Therefore $\varepsilon(N/C) - \varepsilon(N/C)$ is a multiple of q.

Let \mathcal{P} denote the set of all points in N/C that contain more than one element, and let F be the flat of $N \setminus C$ spanned by the union of these points. Choose a minimal set $\mathcal{P}_0 \subseteq \mathcal{P}$ of points spanning F in N/C (so $|\mathcal{P}_0| = r_{N/C}(F)$); if possible choose \mathcal{P}_0 so that it contains a set in $P \in \mathcal{P}$ with $r_{N}(P) > 2$. Note that: (1) the points in \mathcal{P}_0 are mutually skew in N/C, (2) each pair of flats of $N \setminus C$ is modular, and (3) C is a flat of N. It follows that \mathcal{P}_0 is a mutually skew collection of flats in $N \setminus C$. Now, for each $P \in \mathcal{P}_0$, $r_{N}(P) > r_{N/C}(P)$. Therefore, since $r(N) - r(N/C) = k$, we have $r_{N/C}(F) = |\mathcal{P}_0| \leq k$. Moreover, if $r_{N/C}(F) = k$, then each set in \mathcal{P}_0 is a line of $N \setminus C$, and, hence, by our choice of \mathcal{P}_0, each set in \mathcal{P} is a line in $N \setminus C$.

If $r_{N/C}(F) = k$, then we have $|F| = \frac{q^{2k-1}}{q-1}$ and $|\mathcal{P}| \leq |F|$. This gives $\varepsilon(N \setminus C) - \varepsilon(N/C) \leq q\frac{|F|}{q+1} = q\frac{q^{2k-1}}{q^2-1}$, as required.

If $r_{N/C}(F) < k$, then $\varepsilon(N \setminus C) - \varepsilon(N/C) \leq |F| \leq \frac{q^{2k-1}}{q-1}$. It is routine to verify that $\frac{q^{2k-1}}{q-1} < q\frac{q^{2k-1}}{q^2-1}$, which proves the result. \hfill \square

The next two lemmas consider single-element projections, highlighting the importance of U_{2,q^2+1} and U_{2,q^2+q+1} in Theorems 1.2 and 1.3.

Lemma 3.2. Let q be a prime power and let e be an element of a matroid M such that $M \setminus e \cong \text{PG}(r(M) - 1, q)$. Then there is a unique minimal flat F of $M \setminus e$ that spans e. Moreover, if $r(M) \geq 3$ and $r_M(F) \geq 2$, then M/e contains a U_{2,q^2+1}-minor, and if $r_M(F) \geq 3$, then M/e contains a U_{2,q^2+q+1}-minor.
Proof. If F_1 and F_2 are two flats of $M \setminus e$ that span e, then, since $r_M(F_1 \cap F_2) + r_M(F_1 \cup F_2) = r_M(F_1) + r_M(F_2)$, it follows that $F_1 \cap F_2$ also spans e. Therefore there is a unique minimal flat F of $M \setminus e$ that spans e. The uniqueness of F implies that e is freely placed in F.

Suppose that $r_M(F) \geq 3$. Thus $(M/e)\setminus F$ is the truncation of a projective geometry of rank ≥ 3. So M/e contains a truncation of $\PG(2, q)$ as a minor; therefore M/e has a U_{2,q^2+q+1}-minor.

Now suppose that $r(M) \geq 3$ and that $r_M(F) = 2$. If F' is a rank-3 flat of $M \setminus e$ containing F, then $\varepsilon((M/e)\setminus F') = q^2 + 1$, so M/e has a U_{2,q^2+1}-minor. □

An important consequence is that, if M is a simple matroid with a $\PG(r(M) - 1, q)$-restriction R and no U_{2,q^2+q+1}-minor, then every $e \in E(M) - E(R)$ is spanned by a unique line of R. The next result describes the structure of the projections in $\operatorname{EX}(U_{2,q^2+q+1})$.

Lemma 3.3. Let q be a prime power, and $M \in \operatorname{EX}(U_{2,q^2+q+1})$ be a simple matroid, and $e \in E(M)$ be such that $M \setminus e \cong \PG(r(M) - 1, q)$. If L is the unique line of $M \setminus e$ that spans e, then L is a point of M/e, and each line of M/e containing L has $q^2 + 1$ points and is modular.

Proof. Let L' be a line of M/e containing L. Then L' is a plane of $M \setminus e$, so, by Lemma 3.2, L' has $q^2 + 1$ points in M/e.

Note that e is freely placed on the line $L \cup \{e\}$ in M. It follows that M is $\operatorname{GF}(q^2)$-representable. Now L' is a $(q^2 + 1)$-point line in the $\operatorname{GF}(q^2)$-representable matroid M/e; hence, L' is modular in M/e. □

4. **Dealing with long lines**

This section contains two lemmas that construct a U_{2,q^2+q+1}-minor of a matroid M with a $\PG(r(M) - 1, q)$-restriction R and some additional structure.

Lemma 4.1. Let q be a prime power, and M be a simple matroid of rank at least 7 such that

- M has a $\PG(r(M) - 1, q)$-restriction R, and
- M has a line L containing at least $q^2 + 2$ points, and
- $E(M) \neq E(R) \cup L$,

then M has a U_{2,q^2+q+1}-minor.

Proof. We may assume that $E(M) = E(R) \cup L \cup \{z\}$, where $z \notin L \cup E(R)$. Let F be a minimal flat of R that spans $L \cup \{z\}$. It follows easily from Lemma 3.2, that either M has a U_{2,q^2+q+1}-minor or $r_M(F) \leq 6$. To simplify the proof we will prove the lemma with the weaker hypothesis that $r(M) \geq 1 + r_M(F)$, in place of the hypothesis
that \(r(M) \geq 7\), and we will suppose that \((M, R, L)\) forms a minimum rank counterexample under these weakened hypotheses.

Let \(L_z\) denote the line of \(R\) that spans \(z\) in \(M\). Since \(z \not\in L\), we have \(r_M(L \cup L_z) \geq 3\). We may assume that \(r_M(L \cup L_z) = 3\), since otherwise we could contract a point in \(F - (L \cup L_z)\) to obtain a smaller counterexample. Similarly, we may assume that \(r_M(F) = 3\) and \(r(M) = 4\), as otherwise we could contract an element of \(F - cl_M(L \cup L_z)\) or \(E(M) - cl_M(F)\).

By Lemma 3.3, \(L_z\) is a point of \((M/z)\)[R] and each line of \((M/z)\)[R] is modular and has \(q^2 + 1\) points. One of these lines is \(F\), and, since \(F\) spans \(L\), \(F\) spans a line with \(q^2 + 2\) points in \(M/z\). Let \(e \in cl_{M/z}(F)\) be an element that is not in parallel with any element of \(F\). Since \(F\) is a modular line in \((M/z)\)[R], the point \(e\) is freely placed on the line \(F \cup \{e\}\) in \((M/z)[(R \cup \{e\})]. Therefore \(\varepsilon(M/\{e, z\}) = \varepsilon((M/\{z\})[R] - q^2 = 1 + q^2(q + 1) - q^2 = q^3 - 1\), contradicting the fact that \(M \in EX(U_{2,q^2+q+1}).\)

Lemma 4.2. Let \(q\) be a prime power, and \(k \geq 3\) be an integer. If \(M\) is a matroid of rank at least \(k + 7\), with a \(PG(r(M) - 1, q)\)-restriction, and a set \(X \subseteq E(M)\) with \(r_M(X) \leq k\) and \(\varepsilon(M|X) > \frac{q^{2k} - 1}{q^2 - 1}\), then \(M\) has a \(U_{2,q^2+q+1}\)-minor.

Proof. Let \(M_0\) be a matroid satisfying the hypotheses, with a \(PG(r(M_0) - 1, q)\)-restriction \(R_0\). We may assume that \(M_0 \in EX(U_{2,q^2+q+1})\), and by choosing a rank-\(k\) set containing \(X\), we may also assume that \(r_{M_0}(X) = k\). By Lemma 3.2, \(R_0\) has a flat \(F_0\) of rank at most \(2k\) such that \(X \subseteq cl_{M_0}(F_0)\). By contracting at most \(k\) points in \(F_0 - cl_{M_0}(X)\), we obtain a minor \(M\) of \(M_0\), of rank at least \(7\), such that \(r_M(X) = k\), and \(M\) has a \(PG(r(M) - 1, q)\)-restriction \(R\), and there is a rank-\(k\) flat \(F\) of \(R\) such that \(X \subseteq cl_M(F)\).

We may assume that \(M\) is simple and that \(X\) is a flat of \(M\), so \(F \subseteq X\). Let \(n = |F| = \frac{q^k - 1}{q^2 - 1}\). By Lemma 3.2, each point of \(X\) is spanned in \(M\) by a line of \(R|F\). There are \(\binom{q}{2}/\binom{q + 1}{2}\) such lines, each containing \(q + 1\) points of \(F\). If each of these lines spans at most \((q^2 - q)\) points of \(X - F\), then

\[
|X| = |F| + |X - F| \leq \frac{q^k - 1}{q - 1} + \frac{(q^2 - q)(q + 1)}{\binom{q + 1}{2}} = \frac{q^{2k} - 1}{q^2 - 1},
\]

contradicting the definition of \(X\). Therefore, some line \(L\) of \(M|X\) contains at least \(q^2 + 2\) points. We also have \(|L| \leq q^2 + q\), so a calculation gives \(|X - L| > \frac{q^{2k} - 1}{q^2 - 1} - (q^2 + q) \geq \frac{q^{k - 1}}{q - 1} = |F|\), so \(X \neq F \cup L\). Applying Lemma 4.1 to \(M|(E(R) \cup X)\) gives the result. \(\square\)
5. Matchings and unstable sets

For an integer $k \geq 0$, a \emph{k-matching} of a matroid M is a mutually skew k-set of lines of M. Our first theorem was proved in [8], and also follows routinely from the much more general linear matroid matching theorem of Lovász [7]:

\textbf{Theorem 5.1.} There is an integer-valued function $f_{5.1}(q, k)$ so that, for any prime power q and integers $n \geq 1$ and $k \geq 0$, if \mathcal{L} is a set of lines in a matroid $M \cong PG(n-1, q)$, then either

(i) \mathcal{L} contains a $(k+1)$-matching of M, or

(ii) there is a flat F of M with $r_M(F) \leq k$, and a set $\mathcal{L}_0 \subseteq \mathcal{L}$ with $|\mathcal{L}_0| \leq f_{5.1}(q, k)$, such that every line $L \in \mathcal{L}$ either intersects F, or is in \mathcal{L}_0. Moreover, if $r_M(F) = k$, then $\mathcal{L}_0 = \emptyset$.

We now define a property in terms of a matching in a spanning projective geometry. Let q be a prime power, $M \in EX(U_{2,q^2+q+1})$ be a simple matroid with a $PG(r(M) - 1, q)$-restriction R, and $X \subseteq E(M \setminus R)$ be a set such that $M|(E(R) \cup X)$ is simple. Recall that, by Lemma 3.2, each $x \in X$ lies in the closure of exactly one line L_x of R. We say that X is R-\emph{unstable} in M if the lines $\{L_x : x \in X\}$ are a matching of size $|X|$ in R.

\textbf{Lemma 5.2.} There is an integer-valued function $f_{5.2}(q, k)$ so that, for any prime power q and integer $k \geq 0$, if $M \in EX(U_{2,q^2+q+1})$ is a matroid of rank at least 3 with a $PG(r(M) - 1, q)$-restriction R, then either

(i) there is an R-unstable set of size $k + 1$ in M, or

(ii) R has a flat F with rank at most k such that $\varepsilon(M/F) \leq \varepsilon(R/F) + f_{5.2}(q, k)$.

\textbf{Proof.} Let q be a prime power, and $k \geq 0$ be an integer. Set $f_{5.2}(q, k) = (q^2 + q)f_{5.1}(q, k)$. Let M be a matroid with a $PG(r(M) - 1, q)$-restriction R. We may assume that M is simple, and that the first outcome does not hold. Let \mathcal{L} be the set of lines L of R such that $|cl_M(L)| > |cl_R(L)|$. If \mathcal{L} contains a $(k+1)$-matching of R, then choosing a point from $cl_M(L) - cl_R(L)$ for each line L in the matching gives an R-unstable set of size $k + 1$. We may therefore assume that \mathcal{L} contains no such matching. Thus, let F and \mathcal{L}_0 be the sets defined in the second outcome of Theorem 5.1. Let $D = \cup_{L \in \mathcal{L}_0} cl_M(L)$. We have $|D| \leq (q^2 + q)|\mathcal{L}_0| \leq f_{5.2}(q, k)$. By Lemma 3.2, each element of $M \setminus D$ either lies the closure of a line in \mathcal{L} or in a point of R, so is parallel in M/F to an element of R. Therefore, $\varepsilon(M/F) \leq \varepsilon(R/F) + |D|;$ the result now follows. \qed
We use an unstable set to construct a dense minor. Recall that
(q, k)-full and (q, k)-overfull were defined at the start of Section 2.

Lemma 5.3. Let q be a prime power, and $k \geq 1$ and $n > k$ be integers. If $M \in \text{EX}(U_{2,q^2+q+1})$ is a matroid of rank at least $n + k$ with a $\text{PG}(r(M) - 1, q)$-restriction R, and X is an R-unstable set of size k in M, then M has a rank-n (q, k)-full minor N with a U_{2,q^2+1}-restriction.

Proof. We may assume by taking a restriction if necessary that $r(M) = n + k$, and $E(M) = E(R) \cup X$; we show that $N = M/X$ has the required properties. For each $x \in X$, let L_x denote the line of R that spans X; thus $\{L_x : x \in X\}$ is a matching. By the definition of instability, it is clear that X is independent, so $r(N) = n$. Let $x \in X$, and P be a plane of R that contains L_x and is skew to $X - \{x\}$. By Lemma 3.3, $(M/x)|P$ has a U_{2,q^2+1}-restriction. Since $X - \{x\}$ is skew to P, M/X also has a U_{2,q^2+1}-restriction.

To complete the proof it is enough, by Lemma 3.1, to show that $\text{cl}_M(X)$ is disjoint from R. This is trivial if X is empty, so consider $x \in X$ and let $R' = \text{si}(R/L_x)$. Note that $R' \cong \text{PG}(n + k - 3, q)$ is a spanning restriction of M/L_x and $X - \{x\}$ is R'-unstable. Inductively, we may assume that $\text{cl}_M/L_x(X - \{x\})$ is disjoint from R/L_x, but this implies that $\text{cl}_M(X)$ is disjoint from R, as required. \(\square\)

6. The spanning case

In this section we consider matroids that are spanned by a projective geometry.

Lemma 6.1. There is an integer-valued function $f_{6,1}(n, q, k)$ such that, for any prime power q and integers $k \geq 0$ and $n > k + 1$, if $M \in \text{EX}(U_{2,q^2+q+1})$ is a matroid of rank at least $f_{6,1}(n, q, k)$ such that

- M has a $\text{PG}(r(M) - 1, q)$-restriction R, and
- M is (q, k)-overfull,

then M has a rank-n $(q, k + 1)$-full minor N with a U_{2,q^2+1}-restriction.

Proof. Let $k \geq 0$ and $n > k + 1$ be integers, and q be a prime power. Let $m > \max(k + 7, n + k + 1)$ be an integer such that

\[
\frac{q^{r+k} - 1}{q - 1} - q^{2k} - \frac{1}{q^2 - 1} > \frac{q^{r+j} - 1}{q - 1} + \max(q^2 + q, (q^2 - q) f_{5,1}(q, k))
\]

for all $r \geq m$ and $0 \leq j < k$. We set $f_{6,1}(n, q, k) = m$.

Let $M \in \text{EX}(U_{2,q^2+q+1})$ be a (q, k)-overfull matroid of rank at least m, and let R be a $\text{PG}(r(M) - 1, q)$-restriction of M. We will show that M has the required minor N; we may assume that M is simple.
6.1.1. If $k \geq 1$, then no line of M contains more than $q^2 + 1$ points.

Proof of claim: Let L be a line of M containing at least $q^2 + 2$ points. We have $|L| \leq q^2 + q$, so $|E(R) \cup L| \leq \frac{q^r(M) - 1}{q - 1} + q^2 + q < |M|$ by the definition of m. Therefore, there is a point of M in neither R nor L. By Lemma 4.1, M has a U_{2,q^2+q+1}-minor, a contradiction. □

Let \mathcal{L} be the set of lines of R, and \mathcal{L}^+ be the set of lines of R that are not lines of M; note that each $L \in \mathcal{L}^+$ contains exactly $q + 1$ points of R, and spans an extra point in M. By Lemma 3.2, every point of $M \setminus E(R)$ is spanned by a line in \mathcal{L}^+.

6.1.2. \mathcal{L}^+ contains a $(k + 1)$-matching of R.

Proof of claim: If $k = 0$, then since $|M| > |R|$, we must have $\mathcal{L}^+ \neq \emptyset$, so the claim is trivial. Thus, assume that $k \geq 1$ and that there is no such matching. Let $F \subseteq E(R)$ and $\mathcal{L}_0 \subseteq \mathcal{L}$ be the sets defined in Theorem 5.1. Let $j = r_M(F)$; we know that $0 \leq j \leq k$, and that \mathcal{L}_0 is empty if $j = k$. Let $\mathcal{L}_F = \{L \in \mathcal{L} : |L \cap F| = 1\}$. By definition, every point of $M \setminus R$ is in the closure of F, or the closure of a line in $\mathcal{L}_F \cup \mathcal{L}_0$.

Every point of $R \setminus F$ lies on exactly $|F|$ lines in \mathcal{L}_F, and each such line contains exactly q points of $R \setminus F$, so

$$|\mathcal{L}_F| = \frac{|F||R \setminus F|}{q} = \frac{(q^j - 1)(q^{r(M)} - q^j)}{q(q - 1)^2}.$$

Furthermore, each line in \mathcal{L} contains $q + 1$ points of R, and its closure in M contains at most $q^2 - q$ points of $M \setminus R$ by the first claim. We argue that $|\text{cl}_M(F)| \leq \frac{q^{2j - 1}}{q^2 - 1}$; if $j \leq 2$, then this follows from the first claim, and otherwise, we have $r(M) \geq m \geq k + 7$, so the bound follows by applying Lemma 4.2 to M and $\text{cl}_M(F)$. We now estimate $|M|$.

$$|M| = |R| + |M \setminus E(R)|$$

$$\leq |R| + \sum_{L \in \mathcal{L} \setminus \mathcal{L}_0} |\text{cl}_M(L) - E(R)| + |\text{cl}_M(F) - F|$$

$$\leq \frac{q^{r(M)} - 1}{q - 1} + (q^2 - q)(|\mathcal{L}_F| + |\mathcal{L}_0|) + \left(\frac{q^{2j - 1} - q^j - 1}{q^2 - 1} - \frac{q^j - 1}{q - 1}\right).$$

Now, a calculation and our value for \mathcal{L}_F obtained earlier together give $|M| \leq \frac{q^{r(M) + j - 1}}{q - 1} - q\frac{q^{2j - 1}}{q^2 - 1} + (q^2 - q)|\mathcal{L}_0|$. If $j < k$, then, since $r(M) \geq m$ and $|\mathcal{L}_0| \leq f_{5,1}(q,k)$, we have $|M| \leq \frac{q^{r(M) + k - 1}}{q - 1} - q\frac{q^{2k - 1}}{q^2 - 1}$ by definition of m. If $j = k$, then $|\mathcal{L}_0| = 0$, so the same inequality holds. In either case, we contradict the fact that M is (q,k)-overfull. □
Now, \mathcal{L}^+ has a matching of size $k+1$, so by construction of \mathcal{L}^+, there is an R-unstable set X of size $k+1$ in M. Since $r(M) \geq m > n+k+1$, the required minor N is given by Lemma 5.3. □

7. Connectivity

A matroid M is \textit{weakly round} if there is no pair of sets A, B with union $E(M)$, such that $r_M(A) \leq r(M) - 2$ and $r_M(B) \leq r(M) - 1$. Any matroid of rank at most 2 is clearly weakly round. This is a variation on \textit{roundness}, a notion equivalent to infinite vertical connectivity introduced by Kung [6] under the name of ‘non-splitting’. Weak roundness is preserved by contraction; the following lemma is easily proved, and we use it freely.

\textbf{Lemma 7.1.} If M is a weakly round matroid, and $e \in E(M)$, then M/e is weakly round.

The first step in our proof of the main theorems will be to reduce to the weakly round case; the next two lemmas give this reduction.

\textbf{Lemma 7.2.} If M is a matroid, then M has a weakly round restriction N such that $\varepsilon(N) \geq \varphi^{r(M)} \varepsilon(M)$, where $\varphi = \frac{1}{2}(1 + \sqrt{5})$.

\textbf{Proof.} We may assume that M is not weakly round, so $r(M) > 2$, and there are sets A, B of M such that $r_M(A) = r(M) - 2$, $r_M(B) = r(M) - 1$, and $E(M) = A \cup B$. Now, since $\varphi^{-1} + \varphi^{-2} = 1$, either $\varepsilon(M|A) \geq \varphi^{-2} \varepsilon(M)$ or $\varepsilon(M|B) \geq \varphi^{-1} \varepsilon(M)$; in the first case, by induction $M|A$ has a weakly round restriction N with $\varepsilon(N) \geq \varphi^{r(N)-r(M)} \varepsilon(M|A) \geq \varphi^{r(N)-r(M)+2} \varphi^{-2} \varepsilon(M) = \varphi^{r(M)} \varepsilon(M)$, giving the result. The second case is similar. □

\textbf{Lemma 7.3.} Let q be a prime-power, and $k \geq 0$ be an integer. If \mathcal{M} is a base-q exponentially dense minor-closed class of matroids that contains (q,k)-overfull matroids of arbitrarily large rank, then \mathcal{M} contains weakly round, (q,k)-overfull matroids of arbitrarily large rank.

\textbf{Proof.} Note that $\varphi < 2 \leq q$; by the Growth Rate Theorem, there is an integer $t > 0$ such that

$$\varepsilon(M) \leq \left(\frac{q}{\varphi} \right)^t \frac{q^{r(M)+k} - 1}{q - 1} - \frac{q^{2k} - 1}{q^2 - 1},$$

for all $M \in \mathcal{M}$.

For any integer $n > 0$, consider a (q,k)-overfull matroid $M \in \mathcal{M}$ with rank at least $n + t$. By Lemma 7.2, M has a weakly round restriction
Lemma 8.1. There is an integer-valued function $f_{8.1}(n, q, t, \ell)$ so that, for any prime power q, and integers $n \geq 1, \ell \geq 2$ and $t \geq 0$, if $M \in \text{EX}(U_{2,\ell+2})$ is a weakly round matroid with a $\text{PG}(f_{8.1}(n, q, t, \ell) - 1, q)$-minor, and T is a restriction of M of rank at most t, then there is a minor N of M of rank at least n, such that T is a restriction of N, and N has a $\text{PG}(r(N) - 1, q)$-restriction.

Proof. Let $n \geq 1, \ell \geq 2$ and $t \geq 0$ be integers. Let $n' = \max(n, t + 1)$, and set $f_{8.1}(n, q, t, \ell)$ to be an integer m such that $m \geq 2t$, and

$$\frac{q^{m} - 1}{q - 1} \geq \alpha_{2,2}(n', q - \frac{1}{2}, \ell) \left(\ell(q - \frac{1}{2})\right)^{t} (q - \frac{1}{2})^{m}.$$

Let $M \in \text{EX}(U_{2,\ell+2})$ be a weakly round matroid with a $\text{PG}(m - 1, q)$-minor $S = M/\cap D$, where $r(S) = r(M) - r_{M}(C)$. Let T be a restriction of M of rank at most t; we show that the required minor exists.

8.1.1. There is a weakly round minor M_{1} of M, such that T is a restriction of M_{1}, and M_{1} has a $\text{PG}(n' - 1, q)$-restriction R_{1}.

Proof of claim: Let $C' \subseteq C$ be maximal such that T is a restriction of M/C', and let $M' = M/C'$. Maximal implies that $C - C' \subseteq \text{cl}_{M'}(E(T))$, so $r_{M'}(C - C') \leq t$. Now, $r_{M'}(E(S)) = r(S) + r_{M'}(C - C') \leq m + t$. Therefore,

$$\varepsilon_{M'}(E(S)) = \frac{q^{m} - 1}{q - 1} \geq \alpha_{2,2}(n', q - \frac{1}{2}, \ell)\ell^{t}(q - \frac{1}{2})^{-t}(q - \frac{1}{2})^{m+t} \geq \alpha_{2,2}(n', q - \frac{1}{2}, \ell)(\ell(q - \frac{1}{2})^{-1})^{t}(q - \frac{1}{2})^{r_{M'}(E(S))}.$$
By Lemma 2.3 applied to $E(S)$ and $E(T)$, with $\mu = q - \frac{1}{2}$, there is a set $A \subseteq E(S)$, skew to $E(T)$ in M', such that

$$\varepsilon(M'|A) \geq \alpha_{2,2}(n', q - \frac{1}{2}, \ell)(q - \frac{1}{2})^{r(M'|A)}.$$

Therefore, Lemma 2.2 implies that $M'|A$ has a PG($n' - 1, q'$)-minor $R_1 = (M'|A)/C_1 \backslash D_1$, for some $q' > q - \frac{1}{2}$. Let $M_1 = M'/C_1$. The set A is skew to $E(T)$ in M', and therefore also skew to $C - C'$, so $M'|A = (M'/(C - C'))|A = S|A$, so $M'|A$ is GF(q)-representable, and so is its minor R_1. Thus, $q' = q$, and R_1 is a PG($n' - 1, q$)-restriction of M_1. Moreover, $C_1 \subseteq A$, so C_1 is skew to $E(T)$ in M', and therefore M_1 has T as a restriction. The matroid M_1 is a contraction-minor of M, so is weakly round, and thus satisfies the claim. □

Let M_2 be a minor-minimal matroid such that:

- M_2 is a weakly round minor of M_1, and
- T and R_1 are both restrictions of M_2.

If $r(R_1) = r(M_2)$, then $N = M_2$ is the required minor of M. We may therefore assume that $r(M_2) > r(R_1) = n'$. We have $r(T) \leq t \leq n' - 1 \leq r(M_2) - 2$, so by weak roundness of M_2, there is some $e \in E(M_2)$ spanned by neither $E(T)$ nor $E(R_1)$, contradicting minimality of M_2. □

9. Critical elements

An element e in a (q, k)-overfull matroid M is called (q, k)-critical if M/e is not (q, k)-overfull.

Lemma 9.1. Let q be a prime power and $k \geq 0$ be an integer. If e is a (q, k)-critical element in a (q, k)-overfull matroid M, then either

(i) e is contained in a line with at least $q^2 + 2$ points, or
(ii) e is contained in $\frac{q^{2k-1}}{q-1} + 1$ lines, each with at least $q + 2$ points.

Proof. Suppose otherwise. Let \mathcal{L} be the set of all lines of M containing e, and let \mathcal{L}_1 be the set of the min($|\mathcal{L}|, \frac{q^{2k-1}}{q-1}$) longest lines in \mathcal{L}. Every line in $\mathcal{L} - \mathcal{L}_1$ has at most $q + 1$ points and every line in \mathcal{L}_1 has at most
$q^2 + 1$ points, so

\[
\varepsilon(M) \leq 1 + q|\mathcal{L}| + (q^2 - q)|\mathcal{L}_1| \\
\leq 1 + q\varepsilon(M/e) + (q^2 - q)q^{2k - 1} \frac{q^2 - 1}{q^2 - 1} \\
\leq 1 + q \left(q^{r(M)+k-1} \frac{q^2 - 1}{q - 1} - q^{2k - 1} \frac{q^2 - 1}{q^2 - 1} \right) + (q^2 - q)q^{2k - 1} \frac{q^2 - 1}{q^2 - 1} \\
= \frac{q^{r(M)+k-1} - 1}{q - 1} + q^{2k - 1} \frac{q^2 - 1}{q^2 - 1},
\]

contradicting the fact that M is (q, k)-overfull. \(\square\)

The following result shows that a large number of (q, k)-critical elements gives a denser minor.

Lemma 9.2. There is an integer-valued function $f_{9.2}(n, q, k)$ so that, for any prime power q, and integers $k \geq 0$, $n \geq k+1$, if $m \geq f_{9.2}(n, q, k)$ is an integer, and $M \in \text{EX}(U_{2,q^2+q+1})$ is a (q, k)-overfull, weakly round matroid such that

- M has a PG$(m-1, q)$-minor, and
- M has a rank-m set of (q, k)-critical elements,

then M has a rank-n, $(q, k+1)$-full minor with a U_{2,q^2+1}-restriction.

Proof. Let q be a prime power, and $k \geq 0$ and $n \geq 2$ be integers. Let $n' = \max(k + 8, n + k + 1)$, let $d = f_{5.2}(q, k)$, let $t = d(d + 1) + k + 6$, let $s = \frac{q^{2k-1}}{q^2 - 1} + 1$, and set $f_{9.2}(n, q, k) = f_{8.1}(n', q, t(s + 1), q^2 + q - 1)$.

Let $m \geq f_{9.2}(n, q, k)$ be an integer, and let $M \in \text{EX}(U_{2,q^2+q+1})$ be a (q, k)-overfull, weakly round matroid with a PG$(m-1, q)$-minor and a t-element independent set I of (q, k)-critical elements (note that $t \leq m$). We will show that M has the required minor.

By Lemma 9.1, for each element $e \in I$, there is a set \mathcal{L}_e of lines containing e such that either $|\mathcal{L}_e| = 1$ and the single line in \mathcal{L}_e has $q^2 + 2$ points, or $|\mathcal{L}_e| = \frac{q^{2k-1}}{q^2 - 1} + 1$ and each line in \mathcal{L}_e has at least $q + 2$ points. There is a restriction K of M with rank at most $t(s + 1)$ that contains all the lines $(\mathcal{L}_e : e \in I)$. By Lemma 8.1, M has a minor M_1 of rank at least n' that has a PG$(r(M_1) - 1, q)$-restriction R_1, and has K as a restriction. By Lemma 4.1, M_1 has at most one line containing $q^2 + 2$ points.

9.2.1. There is a $(t - 5)$-element subset I_1 of I such that, for each $e \in I_1$, we have $r_K(\bigcup \mathcal{L}_e) \geq k + 2$.

Proof of claim: Note that $|I| = t \geq 5$. If $k = 0$, then every $e \in I$ satisfies the required condition, so an arbitrary $(t - 5)$-subset of I will
do; we may thus assume that \(k \geq 1 \). Since \(K \) contains at most one line with at least \(q^2 + 2 \) points, there are at most two elements \(e \in I \) with \(|L_e| = 1 \). If the claim fails, there is therefore an 4-element subset \(I_2 \) of \(I \) such that \(|L_e| = \frac{2^{2k} - 1}{q - 1} + 1 \) and \(r_K(\cup L_e) \leq k + 1 \) for all \(e \in I_2 \).

For each \(e \in I_2 \), let \(F_e = \text{cl}_K(\cup L_e) \). Then \((K|F_e)/e \) has rank at most \(k \) and has more than \(\frac{2^{2k} - 1}{q - 1} \) points. Since \(k \geq 1 \), this matroid has rank at least 2. Moreover, \(M_1/e \) has rank at least \(n' - 1 \geq k + 7 \) and has a \(\text{PG}\left(r(M_1/e) - 1, q\right) \)-restriction, so, by Lemma 4.2, \(r((K|F_e)/e) = 2 \). Hence, \(k \geq 2 \), \(F_e \) is a rank-3 set containing at least \(q^2 + 2 \) lines through \(e \), each with at least \(q + 2 \) points, and \((K|F_e)/e \) is a rank-2 set containing at least \(q^2 + 2 \) points.

Let \(a \in I_2 \); since \(r_{M_1}(I_2) = 4 > r_{M_1}(F_a) \), there is some \(b \in I_2 - F_a \). Now, \(M_1/b \) has a line \(L = \text{cl}_{M_1/b}(F_b - \{b\}) \) containing at least \(q^2 + 2 \) points, and \((M_1/b)|F_a \) is a rank-3 matroid with at least \(1 + (q+1)(q^2+2) \) points, and therefore at least \(1 + (q+1)(q^2+2) - (q^2+q) > q^2+q+1 \) points outside \(L \). However, \(M_1/b \) has rank at least \(k + 7 \), and has a \(\text{PG}\left(r(M_1/b) - 1, q\right) \)-restriction containing at most \(q^2 + q + 1 \) points in \(F_a - L \), so we obtain a contradiction to Lemma 4.1.

\[9.2.2. \ M_1 \ has \ an \ R_1\text{-unstable \ set \ of \ size} \ k + 1. \]

\textbf{Proof of claim.} Suppose otherwise. By Lemma 5.2, there is a flat \(F \) of \(R_1 \) with rank at most \(k \) such that \(\varepsilon(M_1/F) \leq \varepsilon(R_1/F) + f_{5,2}(q, k) = \varepsilon(R_1/F) + d \). Let \(M_2 = M_1/F \); the matroid \(M_2 \) has a \(\text{PG}\left(r(M_2) - 1, q\right) \)-restriction \(R_2 \), and satisfies \(E(M_2) = E(R_2) \cup D \), where \(|D| \leq d \).

Let \(I_2 \subseteq I_1 \) be a set of size of size \(|I_1| - k \) that is independent in \(M_2 \); note that \(|I_2| \geq d(d+1) + 1 \). For each \(e \in I_2 \), we have \(r_{M_2}(\cup L_e) \geq (k+2) - k = 2 \), so \(e \) is contained in a line \(L_e \) with at least \(q + 2 \) points in \(M_2 \).

Let \(L = \{L_e : e \in I_2\} \). Each \(L_e \) contains \(e \), and at most one other point in \(I_2 \), so \(|L| \geq \frac{1}{2}|I_2| > \binom{d+1}{2} \). Each line in \(L \) contains \(q + 2 \) points, so must contain a point of \(M_2 \setminus E(R_2) \). However, \(|M_2 \setminus E(R_2)| \leq d \), so there are at most \(\binom{d}{2} \) lines of \(M_2 \) containing two points of \(M_2 \setminus E(R_2) \), and by Lemma 3.2, we may assume that there are at most \(d \) lines of \(M_2 \) containing \(q + 2 \) points, but just one point of \(M_2 \setminus E(R_2) \). This gives \(|L| \leq d + \binom{d}{2} = \binom{d+1}{2} \), a contradiction.

Since \(r(M_1) \geq n' \geq n + k + 1 \), we get the required minor \(N \) from the above claim and Lemma 5.3.

\[10. \ \text{The main theorems} \]

The following result implies Theorems 1.2 and 1.3:
Theorem 10.1. Let q be a prime power, and let $\mathcal{M} \subseteq \text{EX}(U_{2,q^2+q+1})$ be a base-q exponentially dense minor-closed class of matroids. There is an integer $k \geq 0$ such that

$$h_M(n) = \frac{q^{n+k} - 1}{q - 1} - \frac{q^{2k} - 1}{q^2 - 1}$$

for all sufficiently large n. Moreover, if $\mathcal{M} \subseteq \text{EX}(U_{2,q^2+1})$, then $k = 0$.

Proof. By the Growth Rate Theorem, \mathcal{M} contains all projective geometries over $\text{GF}(q)$ and, hence, \mathcal{M} contains $(q,0)$-full matroids of every rank. We may assume that there are $(q,0)$-full matroids of arbitrarily large rank, since otherwise the theorem holds. By the Growth Rate Theorem, there is a maximum integer $k \geq 0$ such that \mathcal{M} contains (q,k)-overfull matroids of arbitrarily large rank, and there is an integer $s \geq 0$ such that $\text{PG}(s-1,q') \notin \mathcal{M}$ for all $q' > q$.

To prove the result, it suffices to show that, for all $n > k + 1$, there is a rank-n matroid $M \in \mathcal{M}$ that is (q,k)-full and has a U_{2,q^2+1}-restriction. Suppose for a contradiction that $n > k + 1$ is an integer for which this M does not exist.

Let $m = f_{g_2}(n,q,k)$, and $m_4 = \max(m + 1, s, f_{6,1}(n,q,k))$. Let m_3 be an integer such that

$$q^{m_3} - 1 > \alpha_{2,2}(m_4, q - \frac{1}{2}, q^2 + q - 1) \left(\frac{q^2 + q - 1}{q - \frac{3}{2}} \right)^m (q - \frac{1}{2})^{m_3 + m - 1}. $$

Let $m_2 = \max(s,m_3m)$, and choose an integer $m_1 > s$ such that

$$\alpha_{2,2}(m_2, q - \frac{1}{2}, q^2 + q - 1)(q - \frac{1}{2})^{r} \leq \frac{q^{r+k} - 1}{q - 1} - \frac{q^{2k} - 1}{q^2 - 1}$$

for all $r \geq m_1$. By Lemma 7.3, \mathcal{M} contains weakly round, (q,k)-overfull matroids of arbitrarily large rank; let $M_1 \in \mathcal{M}$ be a weakly round, (q,k)-overfull matroid with rank at least m_1. By Lemma 2.2, M_1 has a PG($m_2 - 1,q'$) minor N_1 for some $q' > q - \frac{1}{2}$; since $m_2 \geq s$, we have $q' = q$. Let I_1 be an independent set of M_1 such that N_1 is a spanning restriction of M_1/I_1, and choose $J_1 \subseteq I_1$ maximal such that M_1/J_1 is (q,k)-overfull.

Let $M_2 = M_1/J_1$ and let $I_2 = I_1 - J_1$. By our choice of J_1, each element in I_2 is (q,k)-critical in M_2. Since $m_2 \geq m$, Lemma 9.2 gives $|I_2| < m$. Choose a collection (F_1, \ldots, F_m) of mutually skew rank-m_3 flats in the projective geometry N_1; each F_i satisfies $r(M_2|F_i) \leq m_3 + m - 1$ and $\varepsilon(M_2|F_i) = \frac{q^{m_3} - 1}{q - 1}$. By our choice of m_3, and by Lemma 2.3 with $\mu = q - \frac{1}{2}$ for each $i \in \{1, \ldots, m\}$, there is a flat $F'_i \subseteq F_i$ of M_2 that is skew to I_2 in M_2, and satisfies $\varepsilon(M_2|F'_i) \geq \alpha_{2,2}(m_4, q - \frac{1}{2}, q^2 + q - 1)(q - \frac{1}{2})^{r_{m_2}}(F'_i)$. Note that, since the sets (F'_1, \ldots, F'_m) are
mutually skew in M_2/I_2 and each of these sets is skew to I_2 in M_2, the flats (F'_1, \ldots, F'_m) are mutually skew in M_2.

By Lemma 2.2, $M_2|F'_i$ has a $\text{PG}(m_4 - 1, q')$ minor P_i for some $q' > q - \frac{1}{2}$; since $m_4 \geq s$, we have $q' = q$. Let X_i be an independent set of $M_2|F'_i$ such that P_i is a spanning restriction of M_2/X_i. Now choose $Z \subseteq X_1 \cup \cdots \cup X_m$ maximal such that M_2/Z is (q, k)-overfull. Let $M_3 = M_2/Z$. Each element of $X_1 \cup \cdots \cup X_s - Z$ is (q, k)-critical in M_3, and P_i is a minor of M_3 for each i. The X_i are mutually skew in M_3 and hence pairwise disjoint; thus, by Lemma 9.2, there exists $i_0 \in \{1, \ldots, m\}$ such that $X_{i_0} - Z = \emptyset$ and, hence, P_{i_0} is a restriction of M_3; let $R = P_{i_0}$.

Choose a minor M_4 of M_3 that is minimal such that:

- M_4 is weakly round, and (q, k)-overfull,
- M_4 has R as a restriction.

By Lemma 6.1, $r(M_4) > r(R)$. Every element of $E(M_4) - \text{cl}_{M_4}(E(R))$ is (q, k)-critical and, since M_4 is weakly round, $r(M_4 \setminus \text{cl}_{M_4}(E(R))) \geq r(M_4) - 2 \geq m_4 - 1 \geq m$. We now get a contradiction from Lemma 9.2.

\[\square\]

Acknowledgements

We thank the referees for their very detailed reading of the manuscript, and for their useful corrections and comments.

References

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada