Search via quantum walk

Ashwin Nayak
University of Waterloo, and
Perimeter Institute for Theoretical Physics

Joint work with

Frédéric Magniez1, Jérémie Roland2, Miklos Santha1
1LRI-CNRS, France, 2UC Berkeley
Abstract search problem

• Input:
 ▪ Set \(X = \{a, b, c, \ldots\} \)
 ▪ Marked elements \(M \) subset of \(X \) (say, \{a, g\})
 ▪ Procedure to answer “\(x \) in \(M \)?”

• Output:
 ▪ Some element \(x \) in \(M \).

• Additional structure: Markov chain \(P \) on \(X \)
Random walk for search

• (s,t)-Connectivity
 • Input: Graph G on n vertices, two specified vertices s,t
 • Question: is there is a path from s to t ?

• Algorithm: start at $u = s$, and repeat $O(n^3)$ times
 • Pick a random vertex v adjacent to u
 • If $v = t$, stop. Else, set $u = v$.
Second example

• **Element Distinctness (ED)**
 - Input: list of *n* numbers \(\{x_1, x_2, x_3, \ldots, x_n\} \)
 - Question: are all the numbers distinct
 (or is there a collision: \(x_i = x_j, \quad i \neq j \))

• **Deterministic Algorithm:**
 - Sort elements; check if consecutive numbers are equal
 - Time complexity: \(O(n \log n) \)

• Not graph search, but can be recast as one.
Element distinctness as graph search

• **Johnson Graph** \((n, r)\)
 - Vertices: size \(r\) subsets of \(\{1, 2, \ldots, n\}\)
 - Edges: \(\{S, T\}\) is an edge iff they differ by 2 elements

• Example: \(n = 15, \ r = 4\)

• Search for subset with collision
Randomized algorithm for ED

• Start at a random vertex of the Johnson graph
 Pick \(r \) indices uniformly at random to form a set \(S \);
 sort the elements \(x_i \) for \(i \) in \(S \);
 check for collisions.

• Repeat for \(T_1 \) steps
 ▪ Perform a random walk on the graph for \(T_2 \) steps
 In each step, swap random element \(i \) in \(S \) and \(j \) not in \(S \);
 remove \(x_i \), insert \(x_j \) into sorted list
 ▪ check for a collision in \(S \)

• If no collision is found, output “no collision”.
 (Less natural algorithm, but adapts well to quantum)
Randomized algorithm for ED

\[x_2 \quad x_5 \]
\[x_8 \quad x_{13} \]

\[x_2 \quad x_3 \]
\[x_{10} \quad x_{13} \]

\[x_2 \quad x_3 \]
\[x_5 \quad x_{13} \]

\[x_2 \quad x_3 \]
\[x_8 \quad x_{13} \]

\[x_2 \quad x_3 \]
\[x_5 \quad x_7 \]

- **Intuition:**
 - In \(T_2 = O(r) \) steps of walk, \(S \) is nearly uniformly distributed
 - \(\Pr[\text{collision in random } S] \approx \frac{(r/n)^2}{r} \)
 - So in \(T_1 = O\left(\frac{n}{r} \right)^2 \) repetitions, a collision will be found

- **Runtime:**
 \[r \log r + T_1 \left(T_2 \log r + 1 \right) \]

 - Set up cost
 - Update cost
 - Checking cost
Speed-up via quantum walk

- Quantum analogue of randomized algorithm
- Speeds up both T_1 and T_2 quadratically

 \[\text{[Ambainis '04]} \]

- Run time of quantum algorithm for ED

 \[
 r \log r + \left(\frac{n}{r} \right) \left(r^{1/2} \log r + 1 \right)
 \]

 \[
 n^{2/3} \log n \quad \text{(setting } r = n^{2/3} \text{)}
 \]

- A second algorithm, for symmetric Markov chains
- Quadratic speed-up in detecting marked elements

 \[\text{[Szegedy '04]} \]
This talk: New search algorithm

• Quantum walk from any irreducible Markov chain

• Algorithm finds a marked element, if any, from any M

• Run time: \(\text{set-up} + \ T_1^{1/2} \ (T_2^{1/2} \ \text{update} + \ \text{check}) \)

\[
\Pr(M)^{-1/2} \overset{\text{singular value gap}^{-1/2}}{\longrightarrow} \]

• Simple --- conceptually, and to analyze

• Unifies and improves several applications
Talk outline

• Classical algorithm

• Quantum walk

• Quantum subroutines
 ▪ Amplitude amplification
 ▪ Phase estimation

• Search algorithm
Classical search algorithm

- Start in some start distribution s

- Repeat for T_1 steps
 - Simulate T_2 steps of the Markov chain P
 - Check if current state is marked

- If no marked element is found, output “none marked”.
Complexity of classical strategy

• P symmetric (for simplicity), ergodic
• Uniform stationary distribution (1-eigenvector)

• Say we start in $s =$ uniform distribution
• Run-time characterized by
 ▪ Spectral gap $\delta(P) = 1 - \text{second largest } |\text{eigenvalue}|$
 ▪ Probability of marked elements $\epsilon = \Pr(M) = |M| / |X|$

• Proposition

 Run-time of the classical strategy is
 set-up $+ (1/\epsilon)$ ($(1/\delta)$ update $+$ check)

 $\rightarrow T_1 \quad \rightarrow T_2$
Talk outline

- Classical algorithm
 Run time $= \frac{1}{\epsilon \delta}$

- Quantum walk

- Quantum subroutines
 - Amplitude amplification
 - Phase estimation

- Search algorithm
The quantum walk

- **State space**: pairs of neighbouring vertices $|x\rangle |y\rangle$
- **Step of walk**: diffuse y over neighbours of x, new nbr. y'
 then, diffuse x over neighbours of y'

- **Diffusion**: analogous to Grover search operator
 \[
 (\text{reflection about state } |x\rangle \sum_y \sqrt{p_{x,y}} |y\rangle, \text{ for each } x)\]
Spectrum of $W(P)$ [Szegedy '04]

- $W(P) = \text{product of two reflection operators}$

- Assume P is symmetric, ergodic
 Has uniform stationary distribution

- Spectrum of $W(P)$ related to that of P

- For every singular value of P, $\sigma = \cos \theta$ in $(0,1)$
 $W(P)$ has eigenvalues $\exp(\pm 2i \theta)$

- The remaining eigenvalues are ± 1
Spectral gap

- Largest singular value of $P = 1$, and is unique $W(P)$ has unique eigenvalue 1 (in walk subspace).

- Eigenvector of $W(P)$ with eigenvalue 1 is
 $$|\pi\rangle = \left(1/n^{1/2}\right) \sum_x |x\rangle |p_x\rangle$$

 where
 $$|p_x\rangle = \sum_y p_{xy}^{1/2} |y\rangle$$

- If $\sigma = \cos \theta < 1$ is second largest singular value, eigenvalue gap of $W(P)$ is
 $$| 1 - \exp(2i\theta) | \geq 2 \left(1 - \sigma\right)^{1/2} = 2 \delta(P)^{1/2}$$
 square-root of spectral gap of P.
Talk outline

• Classical algorithm
 Run time = $1/\varepsilon\delta$

• Quantum walk
 Spectral gap = $\delta^{1/2}$

• Quantum subroutines
 ▪ Amplitude amplification
 ▪ Phase estimation

• Search algorithm
Amplitude amplification

- Search for *one* out of *n* states

- **Start state:** \(|\pi\rangle = \frac{1}{\sqrt{n}} \sum_x |x\rangle \)

- **Desired final state:** \(|a\rangle \)

- **Alternately reflect through** \(|a^\perp\rangle \) and \(|\pi\rangle \)
Complexity of amplitude amplification

- Angle of rotation \(= 2 \varphi \) \((\sin \varphi = 1/n^{1/2})\)

- Number of iterations \(\approx (\pi/2) / (2\varphi) \approx n^{1/2} \)

- Required reflection operators have small circuits

- Multiple marked states
 - Fraction of marked states \(\varepsilon = m/n \)
 - Target state \(= (1/m)^{1/2} \sum_{x \in M} |x\rangle \)
 - Angle of rotation \(= 2 \varphi \) \((\sin \varphi = (m/n)^{1/2} = \varepsilon^{1/2})\)
 - Number of iterations \(\approx 1/ \varepsilon^{1/2} \)
 - Quadratic speed-up over classical
Talk outline

• Classical algorithm
 Run time = $1/\varepsilon\delta$

• Quantum walk
 Spectral gap = $\delta^{1/2}$

• Quantum subroutines
 ▪ Amplitude amplification
 Cost = $1/\varepsilon^{1/2}$
 ▪ Phase estimation

• Search algorithm
Phase estimation

- **Input:** circuit for unitary U
 superposition $|v\rangle$, eigenvector
 with unknown eigenvalue $\exp(2\pi i \theta)$
- **Output:** approximation to θ

- **Proposition** [Kitaev ’95, Cleve, Ekert, Macchiavello, Mosca ’98]
 Can compute an approximation to θ within η
 with $1/\eta$ repetitions of U, one copy of $|v\rangle$
 with probability $3/4$
Reflection using phase estimation

Reflection through $|\nu\rangle$
- Run phase estimation algorithm on the current state, with U
- If approximate phase is “far” from θ, flip sign
- Undo phase estimation

Precision required $\approx \varphi/2$
Repetitions of $U \approx 1/\varphi = 1/$ spectral gap
Reflection via quantum walk $W(P)$

- $|\pi\rangle$ 1-eigenvector of $W(P)$
- $\delta^{1/2}$ spectral gap of $W(P)$

Reflection through $|\pi\rangle$

Use phase estimation, as described

Repetitions of $W(P) \approx 1/\text{spectral gap} \approx 1/\delta^{1/2}$
Talk outline

• Classical algorithm
 Run time = $1/\varepsilon\delta$

• Quantum walk
 Spectral gap = $\delta^{1/2}$

• Quantum subroutines
 • Amplitude amplification
 Cost = $1/\varepsilon^{1/2}$
 • Phase estimation
 Cost = $1/\delta^{1/2}$

• Search algorithm
The search algorithm

• Start state:
 \[|\pi\rangle = \frac{1}{n^{1/2}} \sum_x |x\rangle |\rho_x\rangle \]

• Desired final state:
 \[|\mu\rangle = \frac{1}{m^{1/2}} \sum_{x \in M} |x\rangle |\rho_x\rangle \]

• Alternately reflect through \(|\mu^\perp\rangle \) and \(|\pi\rangle \) à la Grover
Implementing the reflections

• Reflection through $|\mu\rangle$
 If vertex x in first register is marked,
 and second register is in state $|p_x\rangle$,
 then flip sign

• Reflection through $|\pi\rangle$
 Use phase estimation algorithm, as described
Complexity of the algorithm

• Angle between $|\mu\rangle$ and $|\pi\rangle$:
 \[
 \sin \varphi = \left(\frac{m}{n}\right)^{1/2} = \varepsilon^{1/2},
 \]
 \[
 \varepsilon = \Pr(M) = \text{probability of } M \text{ under stationary distribution}
 \]

• Number of rotations à la Grover: \(1/\varepsilon^{1/2}\)

• Cost of reflection through $|\mu\rangle$:
 check + update cost

• Cost of reflection through $|\pi\rangle$:
 update cost times \(1/\delta^{1/2}\)
 \[
 \delta^{1/2} = \text{spectral gap of } W(P)
 \]

• Complexity
 set-up + \((1/\varepsilon^{1/2}) \times (1/\delta^{1/2}) \text{ update + check}\)
Final remarks

• Error due to imperfect phase estimation algorithm handled with a recursive search algorithm à la [Hoyer, Mosca, de Wolf ’04]

• Algorithm extends to any irreducible Markov chain

• Unified and improved algorithms for Element Distinctness, Triangle Finding, Matrix Product verification, Group Commutativity

• Better algorithms for applications in which checking cost is higher than update cost