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Computing the ground-state energy of interacting electron problems has recently been shown
to be hard for QMA, a quantum analogue of the complexity class NP. Fermionic problems are
usually hard, a phenomenon widely attributed to the so-called sign problem. The corresponding
bosonic problems are, according to conventional wisdom, tractable. Here, we demonstrate that
the complexity of interacting boson problems is also QMA-hard. Moreover, the bosonic version of
N -representability problem is QMA-complete. Consequently, these problems are unlikely to have
efficient quantum algorithms.
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Many important model Hamiltonians in physics, such
as the Hubbard model (both fermionic and bosonic) and
those for superconductivity and the quantum Hall effect,
involve at most two-body interactions [1]. The ground-
state wavefunction and energy of these Hamiltonians play
a key role in understanding these fascinating phenom-
ena. In some of these phenomena, electrons are the major
players. Problems involving fermionic particles such as
electrons often seem to be computationally more difficult
than those with bosonic counterparts. This intractabil-
ity is often attributed to the so-called “sign problem”,
occurring in Quantum Monte Carlo simulations [2]. On
the other hand, bosonic problems do not suffer from the
sign problem [3] and are thus regarded as tractable.

Schuch and Verstraete and Liu, Christandl and Ver-
straete have recently shown that computing the ground-
state energy of general interacting electrons is QMA-
hard [4, 5]. The complexity class QMA (Quantum
Merlin-Arthur) is a generalization of the class NP (non-
deterministic polynomial time) to the quantum realm. It
was introduced by Kitaev [6] in the so-called local Hamil-
tonian problem (LHP), where, roughly speaking, the goal
is to determine the ground-state energy of a spin Hamil-
tonian involving only few-body interaction terms. QMA-
hard problems are regarded as difficult, unlikely to be
solved efficiently even by a quantum computer. However,
a quantum computer, if given the solution to any problem
in QMA, along with a suitable “certificate” or “witness
state”, can efficiently verify whether the solution is cor-
rect or not. In fact, as a result of a series of works [7–9],
even for nearest-neighbor two-body interactions among
spin-1/2 particles on a two-dimensional lattice, the LHP
is QMA-complete. With higher magnitude of spins in one
dimension, the LHP can be QMA-complete as well [10].
Understanding and classifying the complexity of physi-
cal models and investigating hard problems using statis-
tical mechanical tools have become important research
endeavors [4–17], as a result of interplay between physics,
chemistry, mathematics and computer science.

The fact that interacting fermion problems are hard
motivates us to investigate the corresponding bosonic
problems. Their complexity seems less explored. Could
bosonic problems be so hard as to be intractable? We
show that generic nearest-neighbor two-body interact-
ing boson problems are indeed QMA-hard. Inspired by
Ref. [5], we study the bosonic version of the (fermionic)
N -representability problem [18, 19], where one is given
a two-particle reduced density matrix ρ and needs to
decide whether there exists a consistent global N -body
state σ. This problem has been vastly explored in quan-
tum chemistry [20], as its solution would enable efficient
solution of ground-state energy for generic two-body in-
teracting fermionic systems. We show that the bosonic
N -representability problem is also QMA-complete. Ad-
ditionally, we show that the bosonic N -representability
problem given only diagonal elements is NP-hard.
QMA-hardness of interacting boson problems. Consider
boson creation and annihilation operators a†j , aj for the
j’th site or mode, obeying the commutations [22]:

[ai, aj ] = 0 = [a†i , a
†
j ], [ai, a

†
j ] = δij . (1)

The use of these operators preserves the symmetry of
the bosonic wavefunctions under permutations, and any
N -boson wavefunction can be represented as follows:

|ψ〉 =
∑

i1+...+im=N

ci1,...,im(a†1)
i1 ...(a†m)im |Ω〉, (2)

where ik (0 ≤ ik ≤ N) denotes the number of bosons
at the kth site, m is the total number of sites, and |Ω〉
denotes the vacuum state without any bosons. Note that
we restrict ourselves to states with exactly N bosons [21].

We construct a bosonic Hamiltonian Hbose, whose
ground-state energy determines the ground-state energy
of the following quantum spin glass model H:

H =
∑
〈i,j〉

3∑
µ,ν=0

cµν
ij σ

(µ)
i ⊗ σ

(ν)
j , (3)
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where i, j label the site, σ(0) = 11 denotes the identity
and σ(1) = σx, σ(2) = σy, and σ(3) = σz are the three
Pauli matrices. The coefficients cµν

ij are real but arbi-
trary. Oliveira and Terhal [9] showed that determining
the ground-state energy ofH is QMA-hard, even if the in-
teractions are restricted to nearest neighbor sites 〈i, j〉 in
the two dimensional square lattice. By way of reduction,
solving the ground-state energy of Hbose is also QMA-
hard. To construct Hbose , we use the Schwinger boson
correspondence between qubit and boson states (see, e.g.,
Ref. [23]) given by the following map:

σx
i ↔ a†i bi + b†iai, σ

y
i ↔ i(b†iai − a†i bi), σ

z
i ↔ a†iai − b†i bi,

where the operators ai, bi correspond to distinct sites.
It is easy to verify that the bosonic operators obey the
commutation relations of the corresponding Pauli opera-
tors. We can regard the qubit at site i as a single boson
that can be in one of two different degrees of freedom:
|zi〉 ↔ (a†i )

zi(b†i )
1−zi |Ω〉 with zi ∈ {0, 1}, correspond-

ing to the dual-rail encoding of a photonic qubit in the
Knill-Laflamme-Milburn linear-optics quantum compu-
tation scheme [24]. Hence, N qubits can be represented
by N bosons in 2N sites (or N sites with each boson
possessing two distinct internal degrees of freedom):

|z1, . . . , zN 〉 ↔ (a†1)
z1(b†1)

1−z1 · · · (a†N )zN (b†N )1−zN |Ω〉.

As any two-local qubit Hamiltonian can be written as a
linear combination of terms with at most two Pauli opera-
tors, the corresponding bosonic Hamiltonian can be writ-
ten as a combination of products of at most two annihila-
tion and two creation operators. To ensure that there be
exactly one boson on the pair of sites corresponding to i,
we add the following extra terms: Pi ≡ (a†iai +b

†
i bi−11)2,

which commute with other terms in the Hamiltonian.
The total bosonic Hamiltonian is then

Hbose ≡ H(a†, b†, a, b) +
∑

i

c Pi, (4)

which involves at most nearest-neighbor two-body inter-
actions [25]. By making the weight c large enough, e.g.,∑

i,j,µ,ν

∣∣cµν
ij

∣∣N(N − 1)/2, we guarantee that the ground
state of the full Hamiltonian has exactly one boson per
site. Thus Hbose may be represented with at most a
polynomially larger number of bits as compared to H.
Thus, if one can compute the ground-state energy of gen-
eral bosonic Hamiltonians with at most two-body inter-
actions, one can solve general spin-1/2 two-local Hamil-
tonian problems. As solving the latter is QMA-hard,
solving the former is QMA-hard as well. This shows that
interacting boson problems are generally difficult.
QMA-hardness of bosonic N -representability problem.
We consider the number of bosons N to be fixed, and
assume that the number of modes m that the bosons oc-
cupy is large enough, i.e., m ≥ δN for some constant
δ > 0. The number of different ways Nm that N identi-
cal bosons can occupy m sites is Nm =

(
N+m−1

N

)
, which

grows exponentially in N , i.e., Nm & (δ+1)N/δN when
N is large. Given an N -boson state ρ(N), the two-boson
reduced state is calculated by tracing out all but two
bosons: ρ(2) ≡ TrN−2ρ

(N), where ρ(N) is in general a
mixture of states |ψ〉 of the form (2). More precisely,
ρ(2) is given via its matrix elements:

ρ
(2)
ijkl ≡

1
N(N − 1)

〈a†ka
†
l ajai〉, (5)

where the bracket indicates the expectation value over
the state ρ(N). Note that the one-boson reduced density
matrix ρ(1) ≡ TrN−1ρ

(N), defined via ρ(1)
ik ≡ 〈a†kai〉/N , is

completely determined once ρ(2) is known:

ρ
(1)
ik =

∑
l

ρ
(2)
ilkl. (6)

Informally, the bosonic N -representability problem
(with m sites) asks whether there is an N -boson state
whose two-particle reduced density matrix equals a given
state ρ. To deal with technical issues related to precision,
we are promised that when there is noN -boson state con-
sistent with it, every two-particle reduced state is “far
away” from ρ. Formally, we are given a two-boson den-
sity matrix ρ of size [m(m+ 1)/2]× [m(m+ 1)/2], and a
real number β ≥ 1/poly(N), with all numbers specified
with poly(N) bits of precision. We would like to decide
if: (“YES” case) There exists an N -boson state σ such
that TrN−2(σ) = ρ, or if (“NO” case) For all N -boson
states σ, ‖TrN−2(σ)− ρ‖1 ≥ β.

We show that the bosonic N -representability is QMA-
hard under Turing reductions [26]. In other words, we
show that given an efficient algorithm for bosonic N -
representability, we can efficiently determine the ground
state energy of Hbose, a QMA-hard problem as estab-
lished above. In the sequel, we refer to an algorithm for
N -representability as the “membership oracle”.

The first step is to write the two-particle interacting
terms in Hbose in terms of a complete orthonormal set,
Q, of two-particle observables: Htwo-body ≡

∑
Q∈Q γQQ,

where the number of elements l ≡ |Q| ∼ O(m4). Note
that poly(m) is poly(N), and so is poly(l). The observ-
ables Q are constructed as in the fermionic case [5]. We
define aI ≡ ai2ai1 , for all pairs I = (i1, i2), i1 ≤ i2. (Note
that in the case of fermions i1 < i2.) We fix a total order
(denoted by ≺) on pairs of indices I. The observables in
Q are defined as follows:

XIJ ≡ 1
√
nInJ

(a†IaJ + a†JaI), for I ≺ J, (7)

YIJ ≡ −i
√
nInJ

(a†IaJ − a†JaI), for I ≺ J, (8)

ZI ≡ 1
nI
a†IaI , for I ≺ L, (9)

where the factor nI = 1 if i1 6= i2, nI = 2 if i1 = i2, and L
denotes the last pair in the ordering. These operators are
Hermitian and the XIJ and YIJ have expectation values
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in the interval [−1, 1] and the ZI have expectation values
in [0, 1] for any two-particle state. In the two-particle
Hilbert space, they are orthogonal to each other under
the trace operator, e.g., Tr(XIJZK) = 0 for all I, J,K.
They also form a basis for any two-boson states ρ(2):

ρ(2) = ZL +
∑
I≺L

αZI
(ZI − ZL)

+
1
2

∑
I≺J

(
α(XIJ )XIJ + α(YIJ )YIJ

)
, (10)

where αQ = Tr(Qρ(2)) for all Q ∈ Q. Using Eq. (6)
we see that the expectation value 〈a†iak〉 of the one-
body terms, can be expressed as linear combination of
the αQ. Thus we have Tr(Hboseρ

(N)) =
∑

Q∈Q γ
′
Q αQ,

where γ′Q includes the contribution from both one-body
and two-body terms, and αQ are the coefficients of
ρ(2) ≡ TrN−2

(
ρ(N)

)
. Finding the ground-state energy

is equivalent to minimizing the linear function f(~α) =∑
Q∈Q γ

′
Q αQ subject to the constraint that ~α ∈ KN ,

where KN denotes the convex set of all ~α such that the
corresponding state ρ(2) is N -representable.

The above minimization of energy, subject to the con-
vex constraint that ρ is N -representable, belongs to
a class of convex optimization problems which can be
solved using the shallow-cut ellipsoid algorithm [27, 28]
with the aid of an N -representability membership oracle.
If KN is contained in a ball of radius R centred at the
origin, and it contains a ball of radius r, the run time
is poly

(
log(R/r)

)
and the error in the solution due to

computation with finite precision is 1/poly(R/r). The
algorithm will be efficient and of polynomially bounded
error, if R/r is at most poly(l).

From the discussion leading to Eq. (10) it follows that
KN is contained in a ball of radius R =

√
l centered at

the origin. However, the method used by Liu et al. [5]
of regarding aj as creation operator for a hole in site
j cannot be employed to suitably bound r from below.
Instead, we explicitly construct a set of N -boson states
such that the convex hull of the corresponding vectors
{αQ} contains a ball of radius 1/poly(l). Relying on
the property that bosons can occupy the same site, for
each Q we construct states so as to maximize or minimize
αQ. The resulting points have the property that for any
coordinate axis, there exist at least two points at constant
distance along that axis. As a consequence, we show that
their convex hull (which is contained in KN ) contains a
ball with radius r ≥ 1/poly(l), centered at the center of
mass of the points.

An algorithm for bosonic N -representability thus
enables efficient calculation of the ground-state en-
ergy of the Hamiltonian Hbose. Consequently, N -
representability is QMA-hard.
QMA-completeness. Is the bosonicN -representability in-
side QMA or even harder? We show that the bosonic
N -representability problem is indeed inside QMA, im-
plying that the problem is QMA-complete. To establish

this, we construct a QMA proof system, i.e., describe a
witness state τ (over polynomially many qubits) for the
N -representability of a given two-boson density matrix ρ,
and a polynomial-time quantum algorithm V (the “veri-
fier”) that expects such a pair ρ, τ as input. The verifier
determines probabilistically whether a given two-boson
density matrix ρ is N -representable, or is far from being
N -representable. In the “YES” case, V outputs “YES”
with probability p1, and in the “NO” case, V outputs
“NO” with probability at least 1−p0. For the problem to
be in QMA, the gap p1−p0 should be at least 1/poly(N);
this gap can be amplified to 1− e−poly(N) [6, 29].

For the witness state, we represent an N -boson state
σ using m qudits (d-dimensional quantum systems), via
the following correspondence, a.k.a. Holstein-Primakoff
bosons (see, e.g., Ref. [23]):

ai ↔ Ai ≡
1√

s+ Sz
i

S+
i , a†i ↔ A†i ≡

1√
s+ Sz

i + 1
S−i ,

where S±i are the raising/lowering operators for i’th
spin, and 2s ≥ N . The spin operators above satisfy
the bosonic commutation relations provided the total
spin magnitude is s. The boson number states |n〉 ∈
{|0〉, |1〉, ..., |2s〉} at one site correspond to the spin states
|sn〉 ∈ {|s〉, |s− 1〉, ..., | − s〉}, and d = 2s+ 1. A bosonic
observable O = a†ia

†
jalak + a†ka

†
l ajai is transformed into

Õ = A†iA
†
jAlAk + A†kA

†
lAjAi, which is a tensor product

of at most four single-qudit observables, in contrast to
the non-local string operators in the fermionic case [5].

The expectation value 〈Õ〉 can be estimated efficiently.
One method is to explicitly diagonalize the observable Õ
as

∑
i λi|θi〉〈θi|, and measure the given qudit representa-

tion σ̃ of the bosonic state σ in the basis {|θi〉}. Repeat-
ing the measurement on polynomially many copies of σ̃,
we can estimate 〈Õ〉. We note that a quantum circuit us-
ing qudits with d = 2s+1 can be implemented efficiently
by an equivalent circuit using qubits.

The witness τ consists of polynomially many blocks,
where each block has m qudits that represent a state σ̃
that is claimed to be an N -boson state with TrN−2(σ̃) =
ρ. The verifier V measures, on each block, the observable∑

k A
†
kAk = ms −

∑
k S

z
k to check whether the particle

number is N . If not, V outputs “NO”. This measure-
ment projects each block onto the space of fixed particle
number states. If the particle number is N , V contin-
ues to perform measurements for a suitable set of ob-
servables (e.g., those corresponding to Q) using the pro-
jected states. It compares whether the outcomes match
the expectation values specified by ρ, to check for con-
sistency. It outputs “YES” if the errors are less than
β/poly(N) (for a suitable polynomial), otherwise outputs
“NO”. When ρ is N -representable, the prover supplies
polynomially many copies of the correct state σ such that
TrN−2(σ) = ρ, and the verifier always answers “YES”
(i.e., p1 = 1), as the measurement outcome is always
consistent with ρ. When ρ is not N -representable, the
prover can cheat by entangling different blocks of qudits.
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Using a Markov argument, first employed by Aharonov
and Regev [30] and later by Liu [28], one can show
that the verifier will still output “NO” with probability
≥ β/poly(N). Thus N -representability is in QMA [31],
and hence QMA-complete. This in turn implies that de-
termining the ground-state energy of interacting bosons
with two-body interactions is also QMA-complete.
Further results. We follow the same argument as
in Ref. [5] and conclude that pure-state bosonic N -
representability is in QMA(k), as the essential point is
to verify the purity of the certificate. Next, consider
the bosonic N -representability problem when only the
diagonal elements Dij ≡ 〈a†ia

†
jajai〉 are specified. If one

considers the case m = 2N and the mapping by the
Schwinger representation, one finds that the solution en-
ables one to solve the ground-state energy of local spin
Hamiltonians which only contain σz operators. The lat-
ter corresponds to a classical spin-glass problem, and is
known to be NP-hard [17]. Thus the problem of deciding
N -representability given {Dij} is also NP-hard.

Concluding remarks. We have shown that two families
of boson problems are QMA-complete, implying that in
the worst-case scenario they are unlikely to be solved effi-
ciently even by quantum computers. However, this does
not preclude the possibility of efficient approximation al-
gorithms. Approaches such as mean-field theory, path-
integral quantum Monte Carlo [3], and more recently
matrix product states [33] and Multiscale Entanglement
Renormalization Ansatz [34] are important endeavors to-
wards classical approximation algorithms. It is possible
that many physical models fall into “easy” instances that
can be solved efficiently by these schemes. A more spec-
ulative direction is to develop quantum approximation
algorithms, which have potential speedup.
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